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I. INTRODUCTION 
 The Mainardi  function is one of the most powerful  special function and it is a particular case of wright 

function . The application of this function have extensively used in a large number of areas of physical and 

applied sciences.  

 Very first ,we will begin with the wright function of second kind that is defined by E.M. Wright , which is as 

follows: 

𝑊𝑝,𝑞 𝑧 =   
𝑧𝑘

𝑘!Γ(𝑝𝑘 +𝑞)

∞
𝑘=0  , 𝑝 > −1, 𝑞𝜖𝑐, 𝑧𝜖𝑐.                                                                                               (1.1) 

If we set  p = - η and q = 1- η , then equation (1.1) is  reduce to Mainardi function given by Mainardi [1] which 

as 

M(z , η)  = 𝑀𝜂 𝑧 =   
(−1)𝑘

𝑘!

∞
𝑘=0  

𝑧𝑘

Γ(−𝜂 𝑘+1 +1)
 ,   𝜂 𝜖 𝐶 , 𝑅 𝜂 > 0, 𝑧 𝜖 𝐶.                                                      (1.2)                                                              

If  put   z = 𝑒𝑧   in equation (1.2) we get Exponential form of Mainardi function as 

   M
η
(𝑒𝑧) = 

(−1)𝑘

𝑘!
 

𝑒𝑧𝑘

Γ(−𝜂 𝑘+1 +1)

∞
𝑘=0    , 𝜂 𝜖 𝐶 , 𝑅 𝜂 > 0, 𝑒𝑧𝜖 𝐶 .                                                                      (1.3) 

Next we required the concept of pathway fractional integral operator . This operator is related to pathway model 

, various fractional integral operators and special function. Pathway fractional integral operator are introduced in 

the paper of Nair [6] and defined in the following way  

         (𝑃0+
(𝜇 ,𝜆)

𝑓)𝑥 =  𝑥𝜇   1 −
𝛼(1−𝜆)𝜏

𝑥
 

𝜇

(1−𝜆)
 

𝑥

𝛼(1−𝜆)
 

0
 𝑓 𝜏 𝑑𝜏                                                                             (1.4) 

Where 𝑓 ∈ L(a,b), { L(a,b) is a lebesgue measurable real and complex valued function}   

  μ ϵ C , R(μ)>0 , α > 0 & pathway parameter λ <1 . 

For pathway model , we use the concept of Mathai [2], Mathai and Haubold [3,4] . If the pathway parameter λ 

→ 1_   then equation (1.4) is convert to Laplace integral transform. 

Remark 1   If  λ = 0 , α = 1 and μ = μ -1 then pathway fractional integral operator in equation (1.4) transform 

to the Riemann – Liouville fractional integral operator as follows: 

 𝑃0+
𝜇−1

𝑓 𝑥 =    𝑥 − 𝜏 𝜇−1𝑓(𝜏)𝑑𝜏
𝑥

0
 = Γ μ    𝐼0+

𝜇
 𝑓 𝑥  . 

 

II. MAIN RESULTS  
 In this section we derive the relation between pathway fractional integral operator and Mainardi 

functions from (1.2).   

Theorem 2.1   Suppose that η ϵ C , R(η) > 0  and 𝑃0+
(𝜇 ,𝜆)

  be the pathway fractional integral operator then there 

holds the relation 

𝑃0+
 𝜇 ,𝜆 

𝑀𝜂 𝑥 =  
Γ 𝑘+1  Γ(

μ

1−λ
+1)

Γ 
𝜇

1−𝜆
 +𝑘+2      𝛼(1−𝜆) 𝑘+1

 𝑥𝜇+1 𝑀𝜂 (𝑥)                                                                                        (2.1)                                   

Proof :-  If  we derive equation (2.1) then express 𝑀𝜂 𝑥  by using equation (1.2)  and apply equation (1.4) we 

have  
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𝑃0+
(𝜇 ,𝜆)

𝑀𝜂 (z)= 𝑥𝜇   1 −
𝛼(1−𝜆)𝜏

𝑥
 

𝜇

1−𝜆

𝑥

𝛼(1−𝜆)

0
  

(−1)𝑘

𝑘!

∞
𝑘=0  

1

Γ(−𝜂 𝑘+1 +1
   

Now interchanging the order of integral and summation, which is valid by uniform convergence of the involved 

series with the given conditions , we get 

                    = 𝑥𝜇  
(−1)𝑘

𝑘!

∞
𝑘=0  

1

Γ(−𝜂 𝑘+1 +1
   1 −

𝛼(1−𝜆)𝜏

𝑥
 

𝜇

1−𝜆

𝑥

𝛼(1−𝜆)

0
 𝜏𝑘𝑑𝜏 

   Put  
𝛼(1−𝜆)𝜏

𝑥
= 𝑣  

=  𝑥𝜇  
(−1)𝑘

𝑘!

∞
𝑘=0  

1

Γ(−𝜂 𝑘+1 +1)
 

𝑥𝑘+1

 𝛼(1−𝜆) 𝑘+1    1 − 𝑣 
𝜇

1−𝜆
1

0
 𝑣𝑘                                                                 (2.2) 

Now by using the Beta function , we have 

= 𝑥𝜇  
(−1)𝑘

𝑘!

∞
𝑘=0  

1

Γ(−𝜂 𝑘+1 +1)
 

𝑥𝑘+1

 𝛼(1−𝜆) 𝑘+1   𝛽 (
𝜇

1−𝜆
+ 1 , 𝑘 + 1) 

= 𝑥𝜇+1  
(−1)𝑘

𝑘!

∞
𝑘=0  

𝑥𝑘

Γ(−𝜂 𝑘+1 +1)
 

1

 𝛼(1−𝜆) 𝑘+1

Γ 𝑘+1  Γ(
𝜇

1−𝜆
 +1)

Γ(
𝜇

1−𝜆
+𝑘+2)

   

= 𝑥𝜇+1 𝑀𝜂(𝑥) 
1

 𝛼(1−𝜆) 𝑘+1

Γ 𝑘+1  Γ(
𝜇

1−𝜆
 +1)

Γ(
𝜇

1−𝜆
+𝑘+2)

  . 

Which completes the required proof of theorem (2.1). 

Corollary (2.1)  If we take pathway parameter λ=0 , α = 1 , μ = μ-1 in equation (2.1) then we get  

𝑃0+
(𝜇−1)

 𝑀𝜂  𝑥 =  
Γ μ Γ(k+1)

Γ(μ+k+1)
 xμ Mη(x)  = 𝐼𝑥

𝜇
𝑀𝜂  𝑥  Γ μ                                                                                        

(2.3) 

i.e. the equation (2.3) show that relation between Mainardi function 𝑀𝜂 𝑥  with Riemann- Liouville fractional 

integral operator 𝐼𝑥
𝜇

 𝑓(𝑥) and Pathway fractional integral operator. 

 

III. PATHWAY INTEGRAL OPERATOR ASSOCIATED WITH MAINARDI  

                                                       FUNCTION FOR EXPONENTIAL FORM  

Theorem  3.1  Suppose that η ϵ C , R(η) > 0  and 𝑃0+
(𝜇 ,𝜆)

  be the pathway fractional integral operator then there 

holds the relation 

𝑃0+
 𝜇 ,𝜆 

𝑀𝜂 𝑒𝑥 =  
Γ 𝑠+1  Γ(

𝜇

1−𝜆
+1)

Γ 
𝜇

1−𝜆
+𝑠+2   𝛼(1−𝜆) 𝑠+1

 𝑥𝜇+1 𝑀𝜂  𝑒𝑥 .                                                                                       (3.1) 

Proof :- If  we derive equation (3 .1) then express 𝑀𝜂 𝑒𝑥  by using equation (1.3)  and apply equation (1.4) we 

have 

𝑃0+
 𝜇 ,𝜆 

𝑀𝜂 𝑒𝑥 =  𝑥𝜇   1 −
𝛼 1−𝜆 𝜏

𝑥
 

𝜇

1−𝜆
𝑀𝜂  𝑒𝜏 𝑑𝜏.

𝑥

𝛼(1−𝜆)

0
  

                         =   𝑥𝜇   1 −
𝛼 1−𝜆 𝜏

𝑥
 

𝜇

1−𝜆
  

(−1)𝑘

𝑘!

𝑒𝜏𝑘

Γ(−𝜂 𝑘+1 +1

∞
𝑘=0 .

𝑥

𝛼(1−𝜆)

0
 

                         =  𝑥𝜇   1 −
𝛼 1−𝜆 𝜏

𝑥
 

𝜇

1−𝜆
  

(−1)𝑘

𝑘!

1

Γ(−𝜂 𝑘+1 +1
  

(𝜏𝑘 )𝑠

𝑠!

∞
𝑠=0

∞
𝑘=0 .

𝑥

𝛼(1−𝜆)

0
  

Now interchanging the order of integral and summation, which is valid by uniform convergence of the involved 

series with the given conditions , we get 

                =  𝑥𝜇    
(−1)𝑘

𝑘!

1

Γ(−𝜂 𝑘+1 +1
  

𝑘𝑠

𝑠!

∞
𝑠=0    1 −

𝛼(1−𝜆)𝜏

𝑥
 

𝜇

1−𝜆

𝑥

𝛼(1−𝜆)

0
  𝜏𝑠 𝑑𝜏∞

𝑘=0 . 

                    Put  
𝛼(1−𝜆)𝜏

𝑥
= 𝑣   in R.H.S. 

                = 𝑥𝜇  
(−1)𝑘

𝑘!

1

Γ(−𝜂 𝑘+1 +1
  

𝑘𝑠

𝑠!

∞
𝑠=0  

𝑥𝑠+1

 𝛼(1−𝜆) 𝑠+1   (1 − 𝑣)
𝜇

1−𝜆
1

0
  𝑣𝑠𝑑𝑣∞

𝑘=0 .    

Now by using the Beta function , we have 

                  = 𝑥𝜇    
(−1)𝑘

𝑘!

1

Γ(−𝜂 𝑘+1 +1
  

𝑘𝑠

𝑠!

∞
𝑠=0   

𝑥𝑠+1

 𝛼(1−𝜆) 𝑠+1   𝛽 (
𝜇

1−𝜆
+ 1 , 𝑠 + 1)∞

𝑘=0  . 

                  =  𝑥𝜇+1   
(−1)𝑘

𝑘!

1

Γ(−𝜂 𝑘+1 +1
  

(𝑘𝑥)𝑠

𝑠!

∞
𝑠=0   

1

 𝛼(1−𝜆) 𝑠+1   
Γ 1+

𝜇

1−𝜆
  Γ(𝑠+1)

Γ(
𝜇

1−𝜆
+𝑠+2)

∞
𝑘=0  . 

                 = 
𝑥𝜇 +1

𝛼(1−𝜆)𝑠+1  
Γ 𝑠+1  Γ(1+

𝜇

1−𝜆
)

Γ(
𝜇

1−𝜆
+𝑠+2)

  𝑀𝜂  𝑒𝑥 . 

Which completes the required proof of theorem (3.1). 

 

Corollary (3.1)  If we take pathway parameter λ=0 , α = 1 , μ = μ-1 in equation (3.1)  then we get known result 

of Mohd. Farman Ali , Manoj Sharma , Renu Jain [5] 

𝑃0+
(𝜇−1)

 𝑀𝜂  𝑒𝑥 =  
Γ 𝜇   Γ(𝑠+1)

Γ(𝜇+𝑠+1)
 𝑥𝜇  𝑀𝜂  𝑒𝑥 =  Γ 𝜇   𝐼𝑥

𝜇
𝑀𝜂 𝑒𝑥   .                                                       (3.2) 
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i.e. the equation (3.2) show that relation between Mainardi function for exponential form 𝑀𝜂 𝑒𝑥  with 

Riemann- Liouville fractional integral operator 𝐼𝑥
𝜇

 𝑓(𝑥) and Pathway fractional integral operator. 

 

IV.  CONCLUSION 
In this paper , We have established relation between Mainardi function and pathway fractional integral 

operator. And it can be easily seen that special case of Pathway fractional integral operator with λ=0 , α = 1 , μ = 

μ-1 reduce to Riemann- Liouville fractional integral operator associated with mainardi functions as earlier 

proved [5].  
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