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Abstract: This paper presents the design of an asymptotic converging observer for an energy harvesting 

system. In an energy harvesting system, an observer is used to estimate mechanical quantities from the known 

electrical variables. Most estimation in the past has remained a challenge owing to rigorous computational 

techniques. In this work, we show that if there exists mappings which are left invertible and the manifolds of 

these mappings are positive invariant, then, using the small gain theorem and the solution of a modified 

algebraic Riccati equation, an asymptotic converging observer can be designed.  
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I. INTRODUCTION 

           In most nonlinear systems, not all the states are available for measurement. In such instances, an observer 

is utilized to estimate the unavailable states. Designing observers for nonlinear systems has received widespread 

attention owing to its utmost significance and intensive mathematical computations (Karagiannis and Astolfi, 

2005). In (Krener and Isidori, 1983) and (Krener and Respondek, 1985), an approach to nonlinear design of 

observers is presented. It consists of linearizing the observed plant and then applying basic observer design 

techniques. However, not all nonlinear system can be linearized. A typical example is the unicycle whose 

nonlinearity is so severe that it cannot be approximated around operating points. Gauthier et.al (1992) and 

Gauthier and Kupka (1994) presents another approach to observer design by using the Lipschitz condition and 

the gain of the plant. (Yu, 2004) presents an observer design for a class of uncertain nonlinear multiple-input-

multiple-output mechanical systems whose dynamics are first-order differentiable. The observer is immune to 

noise and parameter variations. However, the system has to be first order differentiable. To obtain the 

unmeasured states of the control system used in Dou et. al., (2017), an observer design without a model base 

was utilized. In all these instances, certain assumptions need to be drawn which in practice is hard to satisfy. To 

relax these assumptions, a general framework for designing observers which are globally convergent was 

presented in (Karagiannis and Astolfi, 2005). This paper is based on this approach. We show that if there exists 

mappings which are left invertible and the manifolds of these mappings are positive invariant then, using the 

small gain theorem and the solution of a modified algebraic Riccati equation, an asymptotic converging 

observer can be designed.  

.  

II. METHODOLOGY 
Preliminaries 

Karagiannis and Astolfi (2005) described a novel means of designing observers for nonlinear systems.                                                                                                 

Consider the dynamic system    

𝑥 1=𝑓1(𝑥1,𝑥2,𝑡)                                                           (1) 

𝑥 2=𝑓2(𝑥1,𝑥2,𝑡)                                                           (2) 

𝑥1 ∈ ℝ𝑛 is the unmeasured part of the state and 𝑥2 ∈ ℝ𝑚 is the measurable output.  

The vector fields f1(∙) and f2(∙) are assumed to be forward complete, ie their trajectories are defined for all times 

𝑡 ≥ 𝑡0.  

Defination 1. The dynamical system  

                                 𝑥1   = ∝ (𝑥2 , 𝑥1 , 𝑡)                                                                 (3) 

With 𝑥1 ∈ ℝ𝑝 , p ≥n, is called an observer for the system (1) – (2) if there exist mappings                                       

µ(. ) ∶  ℝ𝑛 𝑥 ℝ𝑚 𝑥 ℝ𝑝 → ℝ𝑝 and 𝜎(∙) ∶ ℝ𝑛 → ℝ𝑝, with (∙) left invertible, such that the manifold 

𝛾 =  𝑥1 , 𝑥2 , 𝑥1 , 𝑡 ∈  ℝnxℝm xℝp ∶  𝜇 𝑥2, 𝑥1 , 𝑡 =  σ(𝑥1) is positive invariant which implies that all trajectories 

of the extended system (1) – (2) – (3) that start on  remain there for all future times, and is attractive, which 

implies that the trajectories of (1) – (2) – (3)  that start in a neighborhood of asymptotically converge to .  

Consider the equation  
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                              𝑧 =  𝛾 𝑥2 , 𝑥1 , 𝑡 −  𝜎(𝑥1 , 𝑥2 , 𝑡)                                         (4)  

Using definition 1 to construct an observer implies that  should be designed in such a way that equation (3) 

above asymptotically converges to zero, uniformly in 𝑥1, 𝑥2 and 𝑡.  

 

2.1. Third Order Observer 

Inductor current, IL and capacitor voltage, Vc are variables associated with the boost converter presented in 

(Nunna et.al, 2014) and (Ukoima, 2016). These are measurable, therefore known. 𝜗, 𝑤 and 𝑤𝑟 are assumed 

unknown and have to be accurately estimated. This assumption is useful for sensorless operation of the 

harvester. 

Consider the following equations.   

𝑧1 = 𝑥1 − 𝑥1 + γ
1

(x3)                                          (5) 

𝑧2 = 𝑥2 − 𝑥2 +  γ
2

(x3)                                          (6) 

𝑧3 = 𝑤𝑠 − 𝑤𝑠 +  γ
3

(x3)                                         (7) 

The estimate is taken to be the sum of the observed output and a function of one of the known variables. Out of 

the two known variables (current and voltage), current (𝑥3) is chosen. The reason for choosing 𝑥3 stems from the 

fact that 𝑥3 contains information on the unknown variables. This is easily seen from equation (1) in (Ukoima, 

2016). 

                                𝑥𝑖𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  𝑥1 +  γ
1

(x3)                                                      (8)  

𝛾𝑖 is a function which embeds the design variables.  

 xiestimate = xi + zi                                                                                                        

From (9), it can be observed that if zi ⟶ 0, then xiestimate ⟶ xi.     𝑖 = 1, 2, 3.  

Taking the time derivative of (5), (6) and (7),  

𝑧1 =  𝑥1  − 𝑥1 +
∂γ1(x3)

∂x3
x3                                                                    

𝑧2 =  𝑥2  − 𝑥2 +
∂γ2(x3)

∂x3
x3                                                             

𝑧3 =  𝑤𝑠  − 𝑤𝑠 +
∂γ3(x3)

∂x3
x3        

                                                                      

Let γi(x3) = γi x3        

 ⟹
∂γi (x3)

∂x3
= γ

i
   

Substituting values of x1 ̇ and  from (1) in (Ukoima, 2016). 

𝑧1 =  𝑥1  − 𝑥2 +
∂γ

1
(x3)

∂x3

 
−(1 −  δ)x4

L
+

kE(ws − x2)(1 −  δ)2RL

L (Ra(1 −  δ)2 +  RL)
  

 𝑥2 = 𝑥2 − 𝑧2 + γ
2

(x3) 

 𝑤𝑠 = 𝑤𝑠 − 𝑧3 + γ
3

(x3) 

 𝑥1 = 𝑥1 − 𝑧1 + γ
1

(x3) 

𝑧1 =  𝑥1  −  𝑥2 + γ
2
  x3 − z2 −

γ
1

 (1 −  δ)x4

L
+

γ
1

kE(ws +   x3 − z3
 )(1 −  δ)2RL

L (Ra(1 −  δ)2 +  RL)

− 
γ

1
kE(𝑥2 + γ

2
(x3) −  z2)(1 −  δ)2RL

L (Ra(1 −  δ)2 +  RL)
 

Expanding 𝑧1  

𝑧1 =  𝑥1  − 𝑥2 − γ
2

 (x3) + z2 −
γ

1
 (1 −  δ)x4

L
+

γ
1

kE(ws )(1 −  δ)2RL

L (Ra(1 −  δ)2 +  RL)
+  

γ
1

kE(γ
3

(x3) −  z3)(1 −  δ)2RL

L (Ra(1 −  δ)2 +  RL)

−
γ

1
kE(x2 )(1 −  δ)2RL

L (Ra(1 −  δ)2 +  RL)
−

γ
1

kE(γ
2

(x3) −  z2)(1 −  δ)2RL

L (Ra(1 −  δ)2 +  RL)
 

Let 𝜌 =  
kE (1− δ)2RL

L (Ra (1− δ)2+ RL )
 

Substituting and rearranging 𝑧1  

⇒ 𝑧1 =  𝑥1  − 𝑥2 − γ
2
  x3 + z2 −

γ
1

 (1 −  δ)x4

L
+ 𝜌γ

1
𝑤𝑠 +  𝜌γ

1
 γ

3
  x3 − z3 − 𝜌γ

1
𝑥2 − 𝜌γ

1
(γ

2
  x3 − z2) 

𝑥2 , γ
2
  x3 , γ

1
, γ

3
  x3 are terms which are unknown. Therefore,  can be chosen such that these terms are 

eliminated.  

𝑥1  =  𝑥2 + γ
2
  x3 +

γ1  (1− δ)x4

L
− 𝜌γ

1
𝑤𝑠 −  𝜌γ

1
 γ

3
  x3  + 𝜌γ

1
𝑥2 + 𝜌γ

1
(γ

2
  x3 )   
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Let 𝜁 =
γ1  (1− δ)x4

L
+ 𝜌(𝑥2 + γ

2
  x3 − 𝑤𝑠 − γ

3
  x3 ) 

𝒙𝟏  =  𝒙𝟐 + 𝛄𝟐  𝐱𝟑 + 𝛄𝟏 𝜻                                                               (9) 

⟹ 𝒛𝟏 =  𝐳𝟐 + 𝝆𝛄𝟏(𝐳𝟐 − 𝐳𝟑)                                                              (10) 

Similarly, substituting values of 𝑥2  𝑎𝑛𝑑 𝑥3  

𝑧2 =  𝑥2  −  
−𝑚𝑔𝑙𝑠𝑖𝑛𝑥1

𝐽
+

kEkT(ws − x2)

J (Ra+(1 −  δ)2RL)
  +

∂γ
2

(x3)

∂x3

 
−(1 −  δ)x4

L
+

kE(ws − x2)(1 −  δ)2RL

L (Ra+(1 −  δ)2RL)
  

   

Substituting  𝑣 =
kEkT (ws −x2)

J (Ra +(1− δ)2RL )
and recalling that 𝜌 =  

kE (1− δ)2RL

L (Ra (1− δ)2+ RL )
 and 

∂γi (x3)

∂x3
= γ

i
        

𝑧2 =  𝑥2  +
−𝑚𝑔𝑙𝑠𝑖𝑛𝑥1

𝐽
− 𝑣 ws − x2 −

γ
2

L
 1 −  δ x4 + γ

2
𝜌(ws − x2) 

Substituting for 𝑥2 and 𝑤𝑠  

𝑧2 =  𝑥2  +
−𝑚𝑔𝑙𝑠𝑖𝑛𝑥1

𝐽
− 𝑣 𝑤𝑠 − 𝑧3 + γ

3
(x3) + v(𝑥2 − 𝑧2 + γ

2
(x3)) −

γ
2

L
 1 −  δ x4 + γ

2
𝜌(𝑤𝑠 − 𝑧3

+  γ
3

(x3) − (𝑥2 − 𝑧2 +  γ
2

(x3))) 

Recall that  𝑧1 = 𝑥1 − 𝑥1 +  γ
1
 x3 ⇒ 𝑧1 + 𝑥1 = 𝑥1 + γ

1
(x3)                                                         

 ⇒ sin(𝑥1 + γ
1
 x3 − z1)             
𝑥1

= sin(𝑥1 + 𝑧1) + sin (𝑥1 + γ
1
 x3 )         

𝑥1+𝑧1

− sin 𝑥1 

Substituting these in the z2 ̇ equation and factorizing,  

𝑧2 =  𝑥2  +
−𝑚𝑔𝑙

𝐽
 sin  𝑥1 +  γ

1
 x3  − sin(𝑥1 + 𝑧1) + sin 𝑥1 − 𝑣 𝑤𝑠 − 𝑧3 + γ

3
(x3) + v(𝑥2 − 𝑧2 +

 γ
2

(x3)) −
γ2

L
 1 −  δ x4 + γ

2
𝜌(𝑤𝑠 − 𝑧3 +  γ

3
(x3) − (𝑥2 − 𝑧2 + γ

2
(x3)))  

Again x̂2, γ1(x3), γ2, γ2(x3) are terms which are unknown. Therefore, 𝑥2   is chosen so that these terms are 

eliminated.  

𝑥2  =
−𝑚𝑔𝑙

𝐽
sin  𝑥1 +  γ

1
 x3  − v  𝑥2 +  γ

2
 x3 − 𝑤𝑠 − γ

3
 x3  +

γ
2

L
 1 −  δ x4 − γ

2
𝜌(𝑤𝑠 +  γ

3
(x3) − 𝑥2 

− γ
2

(x3)) 

Factorizing and noting that 𝜁 =
γ1  (1− δ)x4

L
+ 𝜌(𝑥2 + γ

2
  x3 − 𝑤𝑠 − γ

3
  x3 ) 

𝒙𝟐  =
−𝒎𝒈𝒍

𝑱
𝐬𝐢𝐧 𝒙𝟏 +  𝛄𝟏 𝐱𝟑  − 𝐯 𝒙𝟐 + 𝛄𝟐 𝐱𝟑 − 𝒘𝒔 − 𝛄𝟑 𝐱𝟑  + 𝛄𝟐 𝜻                                (11)  

⇒ 𝒛𝟐 =
−𝒎𝒈𝒍

𝑱
 𝐬𝐢𝐧 𝒛𝟏 + 𝒙𝟏 − 𝐬𝐢𝐧 𝒙𝟏 + 𝒗 −𝒛𝟐 + 𝒛𝟑 + 𝛄𝟐𝛒(𝐳𝟐 − 𝐳𝟑)                                    (12)   

For this work, it is assumed that the source rotation speed (ws) is constant  

⇒ ẇs = 0  

Substituting for ẇs and x3 in (7) and following similar procedure above,  

𝒘𝒔  = −𝛄𝟑 𝜻                                                                                                    (13) 

𝒛𝟑 = (𝒛𝟐 − 𝒛𝟑)                                                                                                   (14) 

Equations (9), (11) and (13) represent the nonlinear third order observer  

From (10), (12) and (14), a matrix z-dot (𝑧 ) system can be formed. This is given below.  

  

𝒛𝟏 
𝒛𝟐 
𝒛𝟑 

 =  

𝟎  𝟏 + 𝜸𝟏𝝆 −𝜸𝟏𝝆
−𝒎𝒈𝒍

𝑱
  𝜸𝟐𝝆 − 𝒗  𝜸𝟐𝝆 − 𝒗 

𝟎 𝜸𝟑𝝆 −𝜸𝟑𝝆

  

𝒛𝟏

𝒛𝟐

𝒛𝟑

 −  

𝟎
𝒎𝒈𝒍

𝑱

𝟎

 [𝐬𝐢𝐧 𝒛𝟏 + 𝒙𝟏 − 𝐬𝐢𝐧 𝒙𝟏 − 𝒛𝟏]            (15) 

 

2.2. Proof of an Asymptotically Converging Observer for the Harvester  

A good observer is one in which the estimation errors asymptotically converge to zero. Therefore the design 

variable γ ϵ ℝ3
 must be designed in such a way that zi ⟶ 0. 𝑖 = 1, 2, 3. To begin, (15) is written in a feedback 

interconnection form. In this form, the stability properties can be analyzed using the small gain theorem. It also 

enables solving for γ ϵ ℝ3
.    

 

 

𝑧1 
𝑧2 
𝑧3 

 =

 

  
 

 

0 1 0
−𝑚𝑔𝑙

𝐽
 −𝑣 𝑣

0 0 0

 

             
𝐴

+  

0
𝑚𝑔𝑙

𝐽
0

 

   
𝐵

[0    ρ  − ρ]       
𝐾

 

  
 

 

𝑧1

𝑧2

𝑧3

 −  

0
𝑚𝑔𝑙

𝐽
0

 

   
𝐺

𝜛 

𝜛 = 𝜂 𝑥1 , 𝑧1 𝑧1 =  
[sin  𝑧1+𝑥1 −sin 𝑥1−𝑧1]

𝑧1
 𝑧1                                                    (16) 
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Figure 1. Feedback interconnection 

 

Let ΓL represent the H∞ gain of the linear system and ΓNL represent the L2 norm of the nonlinear system. From 

the small gain theorem, stability occurs iff ΓLΓNL < 1.  

ΓLΓNL < 1 implies zi ⟶ 0.  

ΓNL = 𝑚𝑎𝑥 
𝑥1𝑧1

=  
[sin 𝑧1 + 𝑥1 − sin 𝑥1 − 𝑧1]

𝑧1

 
                   

𝜆

 

Maxima occurs when  
𝑑𝜆

𝑑𝑧1
= 0 

𝑑𝜆

𝑑𝑧1

=
𝑧1 cos 𝑧1 + 𝑥1 − 1 − [sin 𝑧1 + 𝑥1 − sin 𝑥1 − 𝑧1

𝑧1
2

 

⟹
[sin 𝑧1 + 𝑥1 − sin 𝑥1 − 𝑧1]

𝑧1

= cos 𝑧1 + 𝑥1 − 1 

Maximum value of cos((z1 + x1)) = ±1  

⇒ ΓNL = |−1 − 1| = 2  

For stability, it is required that    ΓL <
1

2
 

Consider the system ẋ = Fx+Gu   

z = Hx   

Where F = A + BK;  

A, B, G and K are given in (16)  

H = [1 0 0]  

ΓL <
1

2
 iff there exists an x ϵ ℝ3𝑥3 

= x
′ 
> 0:   

𝐹′𝑥 + 𝑥𝐹 +
𝑥𝐺𝐺 ′𝑥

 ΓL
2 + 𝐻𝐻′ ≤ 0 

This is the algebraic Ricatti equation Substituting for F,  

     (𝐴 + 𝐵𝐾)′𝑥 + 𝑥(𝐴 + 𝐵𝐾)                 
 𝐴′+𝐾 ′𝐵′ 𝑥+𝑥𝐴+𝑥𝐵𝐾

+
𝑥𝐺𝐺 ′𝑥

 ΓL
2 + 𝐻𝐻′ < 0 

 𝐾 ′𝐵′𝑥 + 𝑥𝐵𝐾 =  −𝑥𝐵𝐵𝑥 + 𝑥𝐵𝐵′𝑥 + 𝐾 ′𝐾 − 𝐾 ′𝐾                     
=0

+ 𝐾 ′𝐵′𝑥 + 𝑥𝐵𝐾      

𝐾 ′𝐾 + 𝐾 ′𝐵′𝑥 + 𝑥𝐵𝐾 + 𝐵𝐵′𝑥 =  𝐾 + 𝐵′𝑥 ′[𝐾 + 𝐵′𝑥] 

⇒ 𝐴′𝑥 + 𝑥𝐴 +
𝑥𝐺𝐺′𝑥

 ΓL
2 + 𝐻𝐻′ − 𝐾 ′𝐾 − 𝑥𝐵𝐵𝑥 + 𝑥𝐵𝐵′𝑥 +  𝐾 + 𝐵′𝑥 ′ 𝐾 + 𝐵′𝑥 < 0 

If K + B
′
x = 0, then the equation becomes  

𝐴′𝑥 + 𝑥𝐴 +
𝑥𝐺𝐺 ′𝑥

 ΓL
2 + 𝐻𝐻′ − 𝐾 ′𝐾 < 0                                                (17) 

Equation (17) is the modified algebraic Riccati equation.  

𝐾 +  𝐵′𝑥 =  0 ⇒  𝐵′ =  −𝐾𝑥′ ⇒  𝐵 =  −𝐾′𝑥      
Or similarly, 𝐵′ =  −𝑥−1𝐾 ⇒  𝐵 =  −𝑥−1𝐾′  

Therefore, if there exist an  x = x
′ 
> 0, by solving (17), then the H∞ gain of (16) with input  and output z1 is 

less than .  

It then follows that the selection B = −x
−1

K
′
 is such that 

 (𝑥1 𝑡⟶∞
𝑙𝑖𝑚  𝑡 + 𝛾1 𝑥3 − 𝑥1 𝑡 ) = 0, (𝑥2 𝑡⟶∞

𝑙𝑖𝑚  𝑡 + 𝛾2 𝑥3 − 𝑥2 𝑡 ) = 0 & (𝑤𝑠
 

𝑡⟶∞
𝑙𝑖𝑚  𝑡 + 𝛾3 𝑥3 − 𝑤𝑠 𝑡 ) = 0   

That is to say the system represented by equations (9), (11) and (13) is an asymptotically converging observer 

for the harvester in [2] and [3]. Where B = [γ1 γ2 γ3]
′
.            
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It is important to note that the observer presented in equations (9), (11) and (13) can be extended to the case in 

which ws varies as a function of time. If ws = co + c1𝑡, then the states x1, x2, co and c1have to be estimated. In this 

case, 𝑤𝑠 =  
0 1
0 0

 𝑤𝑠. This thus requires a fourth order observer.  

To construct this observer, consider the following equations  

𝑧1 = 𝑥1 − 𝑥1 + γ
1

(x3)                                                                                 (18) 

𝑧2 = 𝑥2 − 𝑥2 +  γ
2

(x3)                                                                                (19) 

𝑧3 = 𝑐0 − 𝑐0 + γ
3

(x3)                                                                                 (20) 

𝑧4 = 𝑐1 − 𝑐1 +  γ
4

(x3)                                                                                  (21) 

Following similar arguments as described previously, results in the following matrix.  

 

𝑧1 
𝑧2 
𝑧3

𝑧4 
 
 =

 

 
 
 
 

 
 
 
 
 

0 1 0        0
−𝑚𝑔𝑙

𝐽
 −𝑣 𝑣        0

0 0 0         1
     0         0       0        0  

 
 
 
 

               
𝐴

+

 
 
 
 
 

0
𝑚𝑔𝑙

𝐽
0
0  

 
 
 
 

   
𝐵

[0    ρ  − ρ]       
𝐾

 

 
 
 
 

 

𝑧1

𝑧2

𝑧3
𝑧4

 −

 
 
 
 
 

0
𝑚𝑔𝑙

𝐽
0
0  

 
 
 
 

   
𝐺

𝜛 

𝜛 = 𝜂 𝑥1 , 𝑧1 𝑧1 =  
[sin 𝑧1 + 𝑥1 − sin 𝑥1 − 𝑧1]

𝑧1

 𝑧1 

Similarly, if there exist x ϵ ℝ4𝑥4 
= x

′ 
> 0 such that (17) has a solution, then B = −x

−1
K

′
 yields an asymptotically 

converging observer. Where B = [γ1 γ2 γ3 γ4]
 ′
.  

                                                               
                

 

III. RESULTS AND DISCUSSION 
The simulations were performed for the third order observer. It was assumed that the speed of rotation 

of the host is constant. The third order observer is described by equations (9), (11) and (13) with γ1 = 0.4, γ2 = 

−0.4 andγ3 = 0.35. These values of the design parameters were obtained in matlab by solving equation (17) with 

a by trial and error method. Figures 2, 3 and 4 show that the estimation errors converge to zero. To confirm this, 

further plots were obtained in the logarithmic scale. If the errors actually converge to zero, then the log plots are 

expected to tend towards negative infinity. Figures 5, 6 and7 confirms this.  

      

      Figure 2: Time history of the estimation error                      Figure 3: Time history of the estimation error of              

      of the angular position of the mass                               angular position of the mass in log scale 

  

  Figure 4: Time history of the estimation error of                       Figure 5: Time history of the estimation error    

 of  the angular velocity of the mass                                  the angular velocity of the mass performed 
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                                      in log scale 

  

        Figure 6: Time history of the estimation error of             Figure 7: Time history of the estimation error  of   

             the source rotation speed                                   source rotation speed performed in log scale 

 

IV. CONCLUSION 
             In conclusion, we have proved that there exists mappings µ(∙) ∶  ℝ𝑛 𝑥 ℝ𝑚 𝑥 ℝ𝑝 → ℝ𝑝 and 𝜎(∙) ∶ ℝ𝑛→ℝ𝑝, 
with (∙) left invertible such that the manifold 𝛾 =  𝑥1 , 𝑥2 , 𝑥 1 , 𝑡 ∈ ℝ𝑛𝑥ℝ𝑚𝑥ℝ𝑝 : 𝜇 𝑥2 , 𝑥 1, 𝑡 = 𝜎 𝑥1  is positive 

invariant. Therefore, the observer (3) asymptotically converges to zero uniformly in x1, x2 and t.  
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