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I. INTRODUCTION 
The notion of fuzzyness is widely applicable in many branches of Engineering and Technology. 

Throughout, a double sequence is denoted by <Xnk >, a double infinite array of elements Xnk, where each  Xnk  is 

a fuzzy real number. 

The initial works on double sequences is found in Bromwich [2]. Later on it was studied by Hardy [4], 

Moricz [7], Basarir and Sonalcan [1], Sarma [11], Tripathy and Sarma [12] and many others. Hardy [4] 

introduced the notion of regular convergence for double sequences.  

The concept of paranormed sequences was studied by Nakano [8] and Simmons [10] at the initial stage. 

Later on it was studied by many others. 

An Orlicz function M is a mapping  M :[0, )  [0, ) such that it is continuous, non-decreasing and 

convex with  M(0) = 0, M(x) > 0 for x > 0 and  M(x)  , as x   . 

Let  D denote the set of all closed and bounded intervals  X = [a1, a2] on  R, the real line. For  X, Y  D 

we define                                                 

                                            d (X, Y ) = max ( | a1 
_
 b1 |, | a2 

_
 b2 | ), 

where  X = [a1, a2] and  Y = [b1, b2]. It is known that (D, d) is a complete metric space. 

         A fuzzy real number  X  is a fuzzy set on  R,  i.e. a mapping  X : R  I (=[0,1]) associating each real 

number  t  with its grade of membership  X (t). 

         The  - level set [X]

 of the fuzzy real number X, for 0 <   1, defined as           [X]


 = { t  R : X(t)   

}.  

         A fuzzy real number X is called convex if X(t)  X(s)  X(r) = min (X(s),  X(t)), where  s < t < r. 

         If there exists  t0  R such that  X(t0) = 1, then the fuzzy real number  X  is called normal. 

         A fuzzy real number  X  is said to be upper-semi continuous if, for each  > 0, X
-1

( [0, a + )), for all  a  I  

is open in the usual topology of  R. 

         The set of all upper-semi continuous, normal, convex fuzzy real numbers is denoted by R(I) and 

throughout the article, by a fuzzy real number we mean that the number belongs to  R(I). 

         The set R of all real numbers can be embedded in R(I). For r  R, r  R(I) is defined by 

                                       r (t) = 

.

1, for ,

0, for

t r

t r







         A fuzzy real number  X  is called non-negative if  X(t) = 0, for all  t < 0. The set of all non-negative fuzzy 

real numbers is denoted by  R*(I ).                                                            

         Let   d : R(I)  R(I)  R  be defined by                                                                          

                                           d (X, Y) =  
0 1

sup [ ] ,[ ]d X Y 

 

.                                                     

         Then d  defines a metric on R(I).                                                                                             

         The additive identity and multiplicative identity in R(I) are denoted by 0 and 1  respectively. 
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II. DEFINITIONS AND PRELIMINARIES 
A double sequence (Xnk) of fuzzy real numbers is said to be convergent in Pringsheim’s sense to the 

fuzzy real number  L  if, for every   > 0, there exists  n0, k0  N such that d (Xnk, L) < , for all  n  n0 , k  k0.  

A double sequence (Xnk) of fuzzy real numbers is said to be regularly convergent  if it convergent in 

Pringsheim’s sense and the following limits exist:  

                                            lim ( , ) 0nk k
n

d X L  ,  for some Lk  R(I), for each k  N, 

                              and        lim ( , ) 0nk n
k

d X J  ,  for some Jn  R(I), for each n  N. 

         A fuzzy real number sequence (Xk) is said to be bounded if sup | | μ,k
k

X   for some   R*(I ).  

        Throughout the article  2wF, 2( )F , 2cF,
 

2 0( )Fc , 2

R

Fc  and 2 0( )R

Fc denote the classes of  all, bounded,  

convergent in Pringsheim’s sense, null in Pringsheim’s sense, regularly convergent and regularly null fuzzy 

real number sequences respectively.    

         A double sequence space EF
 
is said to be solid (or normal) if <Ynk> 

 
EF,  whenever  |Ynk|  |Xnk|, for all n, k 

 N,  for some  <Xnk>EF. 

         Let K = {(ni, ki) : i  N ;  n1 < n2 < n3 < . . . . and  k1 < k2 < k3 < . . . . } N  N  and EF  be a double 

sequence space. A K-step space of EF is a sequence space 
2{ : }

i i

E

K n k F nk FX w X E      . 

         A canonical pre-image of a sequence 
i in kX  EF  is a sequence <Ynk>  defined as follows: 

                                                
, if ( , ) ,

0, otherwise.

nk

nk

X n k K
Y


 


 

         

 A canonical pre-image of a step space 
E

K  is a set of canonical pre-images of all elements in 
E

K . 

         A double sequence space EF  is said to be monotone if EF  contains the canonical pre-image of all its step 

spaces.  

         From the above definitions we have the following remark. 

 

Remark.  A sequence space  EF
 
 is solid    EF  is monotone.  

         A double sequence space  EF  is said to be symmetric if (X(n) (k))  EF, whenever (Xnk) EF, where    is a 

permutation of  N.  

         In this article we introduce the following sequence spaces of fuzzy real numbers:  

         Let  p = <pnk> be a sequence of strictly positive real numbers. 

2 ( , )M p = 2
,

( ,0)
: lim

nkp

nk
nk F

n k

d X
X w M



      
       

     

 

2 ( , )Fc M p = 
2

,

( , )
{ : lim 0, for some ( )}

nkp

nk
nk F

n k

d X L
X w M L R I



   
     

   

 

         For 0L   we get the class 2 0( ) ( , )Fc M p .  

         Also a fuzzy sequence <Xnk>  2 ( , )R

Fc M p  if  <Xnk>  2 ( , )Fc M p  and the following limits exist: 

                                        
( , )

lim 0, for some ( )

nkp

nk k
k

n

d X L
M L R I



   
   

   

 

                                        
( , )

lim 0, for some ( )

nkp

nk n
n

k

d X J
M J R I



   
   

   
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III. MAIN RESULTS 
 

         Theorem 3.1. Let <pnk> be bounded. Then the classes of sequences 2( )F (M, p), 

2 ( , )R

Fc M p , 2 0( ) ( , )R

Fc M p  are complete metric spaces with respect to the metric defined by, 

                       f (X, Y) = 
,

( , )
inf 0 : sup 1

nkp

nk nkJ

n k

d X Y
r M

r

   
   

   

,   where  J = max (1, 2
H-1

) 

         Proof.  We prove the result for 2 ( , )M p . Let 
i

nkX   be a Cauchy sequence in 2( )F (M, p).  

Let  > 0 be given. For a fixed x0 > 0, choose t > 0 such that 
0 1.

2

tx
M

 
 

 
 and m0  N  be such that 

                                          ( , )i jf X X < 

0tx


  for all  i ,  j  m0.   

                                              
( , )

1
i j

nk nkd X X
M

r

 
  

 
  

                                              
( , )

1
( , )

i j

nk nk

i j

d X X
M

f X X

 
   

 
 M 0

3

tx 
 
 

 

                                              
0

0

( , ) .
3 3

i j

nk nk

tx
d X X

tx

 
     

                       
1

j

nk jX 

   is a Cauchy sequence of fuzzy real number for each n, k  N.               

         Since R(I) is complete there exists fuzzy numbers  Xnk such that  lim j

nk nk
j

X X


  for each n, k  N. 

         Taking  j   in (1) we have,  

                                                     ( , ) εi

nk nkf X X                                                           

        Using the triangular inequality  

                                     ( ,0) ( , ) ( ,0)j j

nk nk nk nkf X f X X f X             

we have <Xnk>  2( )F (M, p).  Hence 2( )F (M, p) is complete.  

 

Theorem 3.2. The space 2( )F (M, p) is symmetric but the spaces 2 ( , )Fc M p , 2 ( , )R

Fc M p , 

2 0( ) ( , )Fc M p , 2 0( ) ( , )R

Fc M p  are not symmetric. 

 

Proof. Obviously the space 2( )F (M, p) is symmetric. For the other spaces consider the following example. 

 

Example 3.1.  Consider the sequence space 2 ( )Fc p . Let  ( ) .M x x   

Let  p1k = 2  for all k  N and pnk = 3, otherwise. Let the sequence <Xnk> be defined by 

                                       
1 2kX     for all k  N. 

and  for n > 1,            

2     for    2 1,

( ) ,  for 1 0,

0,  otherwise.

nk

t t

X t t t

    


    



 

         Let <Ynk> be a rearrangement of  <Xnk> defined by 

                                        2nnY    
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and for n  k,              

2     for    2 1,

( ) , for 1 0,

0,  otherwise.

nk

t t

Y t t t

    


    



 

         Then <Xnk>  2 ( )Fc p  but <Ynk>  2 ( )Fc p . Hence 2 ( )Fc p  is not symmetric. Similarly the other spaces 

are also not symmetric. 

 

Theorem 3.3.  The spaces 2( )F (p), 2 0( ) ( )Fc p  and 2 0( ) ( )R

Fc p  are solid. 

Proof.  Consider the sequence space 2( )F (p). Let <Xnk>  2( )F (p) and <Ynk> be such that  

( ,0) ( ,0)nk nkd Y d X .  

         The result follows from the inequality 

                               { ( ,0)} nkp

nkd Y  { ( ,0)} nkp

nkd X  

         Hence the space 2( )F (p) is solid. Similarly the other spaces are also solid. 

 

Proposition 3.4.  The spaces 2 ( )Fc p , 2( ) ( )R

Fc p  and ( )m p  are not monotone and hence are not solid. 

 

Proof.  The result follows from the following example: 

 

Example 3.2.  Consider the sequence space 2 ( )Fc p . Let  ( ) .M x x   

Let  pnk = 3  for  n + k even and pnk = 2, otherwise. Let  J = {(n, k):  n + k is even} N  N. Let  <Xnk>  be 

defined as:  

         For all  n, k  N,    
1 1 1

3  for     3 2,

( ) (3 1) 3 (3 1) , for 2 1 ,

0,  otherwise.

nk

t t

X t nt n n n t n  

    


        



    

Then  <Xnk>  2 ( )Fc p . Let <Ynk> be the canonical pre-image of  nk JX   for the subsequence J of N. Then 

                                              
 for ( , ) ,

0  otherwise.

nk

nk

X n k J
Y


 


 

Then  <Ynk>  2 ( )Fc p . Thus 2 ( )Fc p  is not monotone. Similarly the other spaces are also not monotone. 

Hence the spaces 2 ( )Fc p , 2( ) ( )R

Fc p  and ( )m p  are not solid. 
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