
IOSR Journal of Engineering (IOSRJEN)                                                                www.iosrjen.org 

ISSN (e): 2250-3021, ISSN (p): 2278-8719  

Vol. 08, Issue 6 (June. 2018), ||V (IV) || PP 25-35  

International organization of Scientific Research                                                               25 | P a g e  

 

Propagation of Plane Waves in a Rotating Magneto-

Thermoplastic Fiber-Reinforced Medium with Voids under G-N 

Theory 
 

Narottam Maity
1
, S. P. Barik

2
, and P. K. Chaudhuri 

3 

1. Department of Mathematics, Nabagram K D Paul Vidyalaya, 27 G.T Road, Serampore -712203, India. 

2. Department of Mathematics, Gobardanga Hindu College, Khantura, 24-Parganas (N), West Bengal, India. 

3. Department of Applied Mathematics  University of Calcutta 92, A. P. C. Road, Kolkata - 700 009, India 

Corresponding Author: S. P. Barik 

 

Abstract: The present study is concerned with the possibility of plane wave propagation in a rotating magneto-

thermoelastic and fire-reinforced material with voids. Following the concepts of Cowin and Nunziato [1] in 

handling void materials and of Green and Nagdhi [3, 4] in dealing with thermoelastic behavior of solids, 

governing equations of motion for the problem have been written in tensor notation. In the present discussion 

Cowin's linear theory applicable to elastic materials with voids and Green and Nagdhi's generalized 

thermoelastic models II and III have been used. The possible velocity of plane wave propagation has been 

obtained as the solution of an algebraic equation involving a determinant whose elements contain the material 

parameters, the direction of applied magnetic field, rotation and the direction of plane wave propagation. A 

particular case derived from our general discussion has been investigated in detail and the numerical results 

based on parameter values have been presented graphically. 
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I. INTRODUCTION 

The purpose of generating more strength to a solid without adding too much weight to it or increasing its 

load bearing capacity is fulfilled through the process of fibre-reinforcing. Actually the process was followed in 

ancient times where people used horse hair in mortar and straws in mud to generate more strength in these 

materials during building of their houses. The process of fiber-reinforcing has been developing continuously 

with advanced technology and the products are in use in various fields. Carbon fibre is ideal as a strengthening 

member in pipes for deep water installations. Most concrete construction includes steel reinforcing, at least 

nominally. Fibre-reinforced materials are used for structures vulnerable to more or less violent vibrations during 

an earthquake and for similar disturbances. Study of wave propagation in fibre-reinforced medium can justify 

the effectiveness of fibre-reinforcing in civil engineering and geophysics. 

Governing equations in classical theory of elasticity are based on one intuitive assumption that a solid is 

a continuum. There is no denying the fact that although this assumption is valid for a wide class of solids, there 

remains a lot where this assumption seems to be inadequate. Geological materials like rocks and soils, and 

manufactured materials like ceramics and pressed powder and many others belong to this class where material 

voids play quite a significant role. To study the effects of loadings on such materials Cowin and Nunziato [1] 

developed a new theory in which they have introduced a new parameter ∅  depending on the change in local 

volume fraction of the solid, in the stress-strain relations. Some basic theorems related to materials with voids 

are discussed by Cowin [6], Goodman and Cowin [7], Cowin and Nunziato [8], Puri [9], Chandrasekharaiah 

[13] and Issan [11]. They developed a linear theory applicable to elastic materials with voids for the 

mathematical study of the mechanical behavior of such materials. The modified linear theory when applied to 

the propagation of longitudinal waves in a porous medium shows some distinct characters of its own. The 

propagation of longitudinal waves in an elastic medium is seen to be significantly affected due to the presence of 

voids in the medium while the transverse wave propagation remains unaffected. Increasing uses of these 

materials suggest that the study of solid mechanics problems needs to be extended to fibre-reinforced media as 

well as medium with voids.  

It is known that mechanical loadings are not the only cause for deformation in elastic solids; thermal 

ladings also can play a vital role in producing deformations in structures and machines subject to generation and 
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flow of heat. Thermoelasticity takes care of the deformations and stresses produced due to thermal loadings 

along with the deformation and stresses produced due to mechanical loadings. Clearly the governing equations 

of motion in thermoelasticity consist of the coupled equations involving mechanical and thermal stresses and the 

equation governing heat flow in the solid. The parabolic type of heat conduction equation as it was adopted 

initially in the classical theory encountered a serious drawback in the sense that the speed of the heat 

propagation in the solid could be infinite, which is absolutely unrealistic. In order to get the parabolic heat 

conduction equation replaced by the hyperbolic type heat conduction equation scientists developed a number of 

models. Green and Nagdhi have formulated three models (I, II, III) of thermoelasticity for isotropic 

homogeneous materials [2, 3, 4]. Model I of Green and Nagdhi theory after linearization reduces to the classical 

theory of thermoelasticity. Energy dissipation has not been taken into consideration in model II while model III 

takes care of it. Both the models of type II and III imply a finite speed of propagation for heat waves. 

Investigation of various problems characterizing the two theories has been discussed by Chandrasekharaiah [13, 

14]. Further modifications in the constitutive equations of thermoelasticity were done by Green and Nagdhi [2, 

3] to accommodate a wider class of heat flow problems.  

Another interesting field of recent study is the field of magneto-thermoelasticity in which interacting 

effects of applied magnetic field on elastic and thermal deformations of a solid are studied. Such studies have 

applications in several areas, particularly in nuclear devices, biomedical engineering and geomagnetic 

investigations. Some of the works related to the interaction of the electromagnetic field, the thermal field and the 

electric field may be available in literature viz, Abd-Alla and Al-Dawy [15, 16], Ezzat and Othman [17], Ezzat 

[18], Ezzat et al. [19], Wang et al. [20], Othman and Song [21], Othman [22], Othman et al. [23], Othman and 

Said [24] etc. A number of discussions relating wave propagation in rotating isotropic or transversely isotropic 

media was reported in literature, some of which are the works of RoyChoudhuri [25], Gupta and Gupta [26], 

Singh [30] etc. RoyChoudhuri and Banerjee [31] studied the propagation of time-harmonic coupled 

electromagnetoelastic dilatational thermal shear waves using the thermoelasticity theory of type II [3]. 

Thermoelastic plane waves in a rotating transversely isotropic medium has been studied by Ahmad and Khan 

[32]. A number of discussion relating to fibre-reinforced materials was made by England and Rogers [33], 

Belfield et al. [34], Othman [36], Othman [37], Markham [38], Zorammuana [39] etc. 

The present discussion aims at investigating the propagation of plane waves in a rotating thermoelastic 

fiber-reinforced medium with and without energy dissipation under Green-Nagdhi model. A magnetic field of 

uniform magnitude is supposed to be acting on the medium but there is no body force. Fiber-reinforcing of 

general type has been considered and the governing equations of motion are framed taking into account of the 

thermoelastic characteristics of the material, rotational effects and the applied magnetic field. Equations have 

been presented using tensor notations. Possibilities of plane wave propagation in the medium have been studied 

in this discussion. Effects of rotation, applied magnetic field, and temperature of the material on plane wave 

propagation have been examined severally and jointly. Some numerical results have been presented in the form 

of graphs based on the particular values of the parameters involved to assess the effects of various parameters on 

the plane wave propagation in the medium. 

 

II. NOMENCLATURE 
𝜏𝑖𝑗  , 𝜀𝑖𝑗 = the Cartesian components of the stress and strain tensor 

𝑢𝑖  = displacement vector  

𝜆, 𝜇𝑇  = elastic constants 

𝜑= the volume fraction field 

 𝛼
∗ , 𝛽∗, 𝜇𝐿 − 𝜇𝑇  = reinforcement parameters 

𝜈= is a temperature parameter 

𝜌 = the material density 

Ω = angular velocity vector 

H , h, H0 = magnetic field,  induced magnetic field and applied magnetic field  

J = current density 

E = induced electric field 

𝜖0 , 𝜇0 = electrical conductivity and magnetic permeability 

𝑇∗= reference temperature 

K = coefficient of thermal conductivity 

𝐾∗  = additional material constant 

𝑐𝑒  = specific heat of the solid at constant strain 

𝛼𝑇= coefficient of linear thermal expansion 

𝜉, 𝛼, 𝛽, 𝜔𝑑 , 𝑘    = void constants 

𝜔 = wave number 
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III. FORMULATION OF THE PROBLEM AND SOLUTION 

Following Belfield et al. [34] the stress-strain relations for linearly fibre- reinforced elastic medium may be 

expressed in tensor form as 

𝜏𝑖𝑗 =𝜆𝜖𝑘𝑘   𝛿𝑖𝑗 + 2𝜇𝑇  𝜖𝑖𝑗 + 𝛼∗  𝑎𝑘𝑎𝑚𝜖𝑘𝑚 𝛿𝑖𝑗 + 𝑎𝑖𝑎𝑗 𝜖𝑘𝑘   + 2 𝜇𝐿 − 𝜇𝑇                  
 𝑎𝑖𝑎𝑘𝜖𝑘𝑗 + 𝑎𝑗 𝑎𝑘𝜖𝑘𝑖 + 𝛽∗ 𝑎𝑘𝑎𝑚𝑎𝑖𝑎𝑗 𝜖𝑘𝑚  + 𝛽𝜑𝛿𝑖𝑗 − 𝜈𝑇𝛿𝑖𝑗                                                                                     (1) 

 where 𝜏𝑖𝑗  are the  Cartesian components of the stress tensor; 

𝜖𝑖𝑗 =
1

2
(𝑢𝑖 ,𝑗 + 𝑢𝑗 ,𝑖)   are the strain components, related to the displacement vector 𝑢𝑖  ;   𝜆,  𝜇𝑇   are elastic 

constants; 𝛼∗,  𝛽∗, (𝜇𝐿 − 𝜇𝑇)   are reinforcement parameters; 𝜈  is a temperature parameter; 𝜑  is the volume 

fraction field and 𝒂 = (𝑎1, 𝑎2 , 𝑎3)  such that  𝑎1
2 + 𝑎2

2 + 𝑎3
2 = 1. 

For a rotating elastic medium the equation of motion, in absence of body force, can be written as 

   𝜏𝑖𝑗 ,𝑗 = 𝜌 𝑢𝑖 + {𝜴 ×  𝜴 × 𝒖 + 2𝜴 × 𝒖} 𝑖                                                                                                                      (2)                  

In (2), 𝜌 denotes the material density, 𝛀  is the angular velocity vector, overhead dot represents differentiation 

with respect to time and the suffix 𝑖 after second bracket represent the 𝑖 th component of the vector inside. 

If, in addition, the solid is under the action of magnetic field  𝑯, then the governing field equations involving the 

displacement 𝒖 =  𝑢𝑖(𝒙;  𝑡) and the temperature 𝑇(𝑥;  𝑡), for a fiber-reinforced void material with rotation in 

absence of body force may be written as [Maity et al. [28, 29]] 

 𝜆 + 𝜇𝑇 + 𝑢𝑘 ,𝑘𝑖 + 𝜇𝑇𝑢𝑖 ,𝑘𝑘 + 𝛼∗ 𝑎𝑘𝑎𝑚𝑢𝑘 ,𝑚𝑖 + 𝑎𝑖𝑎𝑗 𝑢𝑘 ,𝑘𝑗  +  𝜇𝐿 − 𝜇𝑇 [𝑎𝑖𝑎𝑘𝑢𝑘 ,𝑗𝑗 + 𝑎𝑖𝑎𝑘𝑢𝑗 ,𝑘𝑗

+ 𝑎𝑗 𝑎𝑘 𝑢𝑘 ,𝑖𝑗 + 𝑢𝑖 ,𝑘𝑗  ] + 𝛽𝜑,𝑖− 𝜈𝑇,𝑖+ 𝛽∗𝑎𝑖𝑎𝑗 𝑎𝑘𝑎𝑚𝑢𝑘 ,𝑚𝑗 +  𝐽 × 𝐵 𝑖

= 𝜌 𝑢 𝑖 + {𝛺 ×  𝛺 × 𝑢 + 2𝛺 × 𝑢} 𝑖                                                                                              (3) 

𝛼𝜑,𝑘𝑘− 𝜔𝑑𝜑 − 𝜉𝜑 − 𝛽𝑢𝑘 ,𝑘 + 𝑚𝑇 = 𝜌𝑘 𝜑                                                                                                                     (4) 

and   𝐾𝑇, 𝑘𝑘  +  𝐾∗𝑇,𝑘𝑘−  𝑚𝑇∗𝜑,𝑡− 𝜈𝑇∗𝑢 𝑘 ,𝑘 =  𝜌𝑐𝑒  • 𝑇                                                                                                    (5)                                                                                

where  𝐾 =  0  represents the heat conduction without energy dissipation. α, ξ, β,  ωd , k   are void constants.  

The term 𝐉 × 𝐁  in (3) arises from the presence of the applied magnetic field. Due to the application of the 

initially applied magnetic field 𝐇𝟎 , an induced magnetic field  𝐡, an induced electric field  𝐄 and a current 

density 𝐉 are developed. For a slowly moving homogeneous electrically conducting medium, the simplified 

system of linear equations of electrodynamics are 

𝛁 ×  𝒉 =  𝑱 + 𝜖0 𝑬 ,   𝛁 × 𝑬 = −𝜇0𝒉 , 𝛁 ∙ 𝒉 =  0, 𝑬 = − 𝒖  ×  𝑩                                                                         (6)                                            

Where 𝜖0 is the electrical conductivity and   𝜇0 is the magnetic permeability so that 𝐁 = μ
0

 𝐇   is the magnetic 

field in the medium due to total magnetic field  𝐇 =  𝐇𝟎  +  𝐡,   arising from applied field  𝑯𝟎  and induced  

field  𝒉. 

If we assume that   𝐇𝟎  =  (H01 , H02 , H03) and    𝛀 = (Ω1,Ω2,Ω3), then utilizing relations (6) and neglecting 

products of  𝐡  with  𝐮  and its derivatives, the governing equations of motion (3), (4) and (5) for a void medium 

in thermoelasticity with and without energy dissipation under the action of applied magnetic field and rotation 

may be written in tensor notation as 

 𝜆 + 𝜇𝑇 + 𝑢𝑘 ,𝑘𝑖 + 𝜇𝑇𝑢𝑖 ,𝑘𝑘 + 𝛼∗ 𝑎𝑘𝑎𝑚𝑢𝑘 ,𝑚𝑖 + 𝑎𝑖𝑎𝑗 𝑢𝑘 ,𝑘𝑗  

+  𝜇𝐿 − 𝜇𝑇  𝑎𝑖𝑎𝑘𝑢𝑘 ,𝑗𝑗 + 𝑎𝑖𝑎𝑘𝑢𝑗 ,𝑘𝑗 + 𝑎𝑗 𝑎𝑘 𝑢𝑘 ,𝑖𝑗 + 𝑢𝑖 ,𝑘𝑗   + 𝛽∗𝑎𝑖𝑎𝑗 𝑎𝑘𝑎𝑚𝑢𝑘 ,𝑚𝑗 + 𝜇0𝐻0
2𝑢𝑗 ,𝑗𝑖

− 𝜇0𝐻0𝑘𝐻0𝑖𝑢𝑗 ,𝑗𝑘 − 𝜇0𝐻0𝑚𝐻0𝑘 𝑢𝑘 ,𝑖𝑚 + 𝑢𝑖 ,𝑘𝑚  − 𝜇0
2𝜖0𝐻0

2 𝑢 𝑖 − 𝑢 𝑘 +  𝛽𝜑,𝑖− 𝜈𝑇,𝑖
= 𝜌 𝑢 𝑖 + 𝛺𝑘𝛺𝑖𝑢𝑘 − 𝛺2𝑢𝑖 + 2𝜖𝑖𝑗𝑘 𝛺𝑗 𝑢 𝑘                                                                                        (7) 

𝛼𝜑,𝑘𝑘− 𝜔𝑑𝜑 − 𝜉𝜑 − 𝛽𝑢𝑘 ,𝑘 + 𝑚𝑇 = 𝜌𝑘 𝜑                                                                                                                   (8) 

𝐾𝑇, 𝑘𝑘  +  𝐾∗𝑇,𝑘𝑘−  𝑚𝑇∗𝜑,𝑡− 𝜈𝑇∗𝑢 𝑘 ,𝑘 =  𝜌𝑐𝑒  • 𝑇                                                                                                (9) 

Where  𝑇∗  is the reference temperature,   𝜈 =  (3𝜆 + 2𝜇)𝛼𝑡 ,  𝐾 is the coefficient of thermal conductivity, 𝐾∗ is 

the additional material constant,  𝜌  is the mass density, 𝑐𝑒  is the specific heat of the solid at constant 

strain, 𝛼𝑡   is the coefficient of linear thermal expansion,  𝜆 and  𝜇 are Lames constants. In (7),  𝜖𝑖𝑗𝑘  represents the 

Levi-civita tensor which has a non-zero value only if 𝑖, 𝑗, 𝑘 are all distinct and has a value 1 if 𝑖, 𝑗, 𝑘 are in cyclic 

order, whereas, it has a value  -1 when they are acyclic. 

 

IV. PLANE WAVE PROPAGATION 
In order to examine the possibility of a plane wave propagation in the medium under consideration we shall 

assume a solution of governing equations (7), (8) and (9) in the form 

 𝑢𝑖 , 𝜑, 𝑇 =  𝐴𝑝𝑖 , 𝐵, 𝐶 exp{ 𝜏 (𝑞 𝑛𝑠𝑥𝑠 − 𝜔𝑡)}, 𝑖 =  1, 2, 3;  𝜏 =-1                                                               (10) 

The speed of the wave is 𝑐𝑛 =
𝜔

𝑅𝑒(𝑞)
                                                                                                                               (11) 

The direction of plane wave propagation is represented by the unit vector 𝒏 =  (𝑛1, 𝑛2, 𝑛3), while the direction 

of particle displacement is denoted by the unit vector 𝒑 =  (𝑝1 , 𝑝2 , 𝑝3).  𝐴, 𝐵 and 𝐶   appearing in (10) are 

constants. 

Substituting (10) into (7), (8), (9) and using   𝜏2 = −1, 𝑛𝑘𝑛𝑘  =  1 we get 
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 𝑛𝑖𝑘𝑝𝑘 + 𝜃𝑝𝑖 𝐴 −  𝛽𝜏𝑛𝑖𝑞 𝐵 +  𝜈𝜏𝑛𝑖𝑞 𝐶 = 0                                                                                                   (12) 

 𝛽𝜏𝑞𝑛𝑘𝑝𝑘 𝐴 −   𝜌𝑘 𝜔2 − 𝜉 + 𝛼𝑞2 + 𝜏𝜔𝜔𝑑  𝐵 + 𝑚𝐶 = 0                                                                              (13) 

 𝜈𝑇∗𝜔2𝜏𝑞𝑝𝑘𝑛𝑘 𝐴 +  𝑚𝑇∗𝜏𝜔 𝐵 +   𝑘𝜏𝜔 − 𝑘∗ 𝑞2 + 𝜌𝑐𝑒𝜔
2 𝐶 = 0                                                                         (14) 

 

where       𝜂𝑖𝑘 = 𝑞2 𝐹𝑖𝑘 + 𝑀𝑖𝑘  + 𝑅𝑖𝑘  

𝐹𝑖𝑘 =  𝜆 + 𝜇𝑇 𝑛𝑖𝑛𝑘 + 𝛼∗ 𝑎𝑘𝑎𝑚𝑛𝑖𝑛𝑚 + 𝑎𝑖𝑎𝑗 𝑛𝑗𝑛𝑗  +  𝜇𝐿 − 𝜇𝑇  𝑎𝑖𝑎𝑘 + 𝑎𝑖𝑎𝑙𝑛𝑘𝑛𝑙 + 𝑎𝑗 𝑎𝑘𝑛𝑖𝑛𝑗  

+𝛽∗𝑎𝑖𝑎𝑗 𝑎𝑘𝑎𝑚𝑛𝑚𝑛𝑗                                                                                      

𝑀𝑖𝑘 = 𝜇0𝐻0
2𝑛𝑖𝑛𝑘 − 𝜇0𝐻0𝑖𝐻0𝑗 𝑛𝑗𝑛𝑘 − 𝜇0𝐻0𝑚𝐻0𝑘𝑛𝑖𝑛𝑚 +

𝜇0
2𝜖0𝜔

2𝐻0𝑘𝐻0𝑖

𝑞2
                                                            (15) 

𝑅𝑖𝑘 = 𝜌𝛺𝑘𝛺𝑖 − 2𝜌𝜖𝑖𝑗𝑘 𝜔𝜏𝛺𝑗                                                                                                                                                      

𝜃 =  𝜇𝑇 +  𝜇𝐿 − 𝜇𝑇 𝑎𝑗 𝑎𝑘𝑛𝑘𝑛𝑗  − 𝜇0
2𝜖0𝜔

2𝐻0
2 + 𝑞2𝜇0𝐻0𝑚𝐻0𝑘𝑛𝑚𝑛𝑘 − 𝜌 𝛺2 + 𝜔2                                                 

Eliminating  𝐴, 𝐵 and 𝐶  from (12), (13), (14) we get 

 

 

 𝜂𝑖𝑘 + 𝜃𝛿𝑖𝑘 𝑝𝑘 −𝛽𝜏𝑛𝑖𝑞 𝜈𝜏𝑛𝑖𝑞

𝛽𝜏𝑞𝑛𝑘𝑝𝑘 −  𝜌𝑘 𝜔2 − 𝜉 + 𝛼𝑞2 + 𝜏𝜔𝜔𝑑  𝑚

𝜈𝑇∗𝜔2𝜏𝑞𝑝𝑘𝑛𝑘 𝑚𝑇∗𝜏𝜔   𝑘𝜏𝜔 − 𝑘∗ 𝑞2 + 𝜌𝑐𝑒𝜔
2 

 = 0                                    16  

 

 

The determinantal equation (16) yields an algebraic equation in 𝑞2  with complex coefficients which will 

determine the wave speed  𝑐𝑛  in (11). It is clear that the velocity of the plane wave propagation depends on the 

elastic behavior of the fibre-reinforced material, direction  𝑛𝑖  of propagation of the wave, applied magnetic field, 

temperature coefficients, rotation of the medium and void character of the material. As a particular derivation 

from our general results above we consider propagation of a longitudinal plane wave for which the directions of 

particle displacement 𝑝𝑖  and the direction of wave propagation 𝑛𝑖  are the same. Accordingly, 𝑝𝑖  =  𝑛𝑖  and 

  𝑝𝑖  𝑛𝑖 =  1 . In this case we consider a fibre reinforced elastic body with fibre-reinforcing direction 𝒂 =
 (0, 0, 1)  is rotating with uniform angular velocity Ω=  𝛺(0, 0, 1)  (Fig.1). Let us suppose that a uniform 

magnetic field 𝐇𝟎  =  H0(0, 1, 0) is applied to the body. We investigate propagation of a plane wave in the 

medium in a direction specified by the unit vector  𝒏 =  (0, 0, 1). 
In the present case equation (16) transforms into 

 

𝑞2𝑋 + 𝑌 −𝛽𝜏𝑞 𝜈𝜏𝑞

𝛽𝜏𝑞 −  𝜌𝑘 𝜔2 − 𝜉 + 𝛼𝑞2 + 𝜏𝜔𝜔𝑑  𝑚

𝜈𝑇∗𝜔2𝜏𝑞 𝑚𝑇∗𝜏𝜔   𝑘𝜏𝜔 − 𝑘∗ 𝑞2 + 𝜌𝑐𝑒𝜔
2 

 = 0                                                (17) 

 

where   𝑋 =  𝜆 + 𝜇𝑇 + 2𝛼∗ + 3 𝜇𝐿 − 𝜇𝑇 + 𝛽∗ + 𝜇0𝐻0
2  

and   𝑌 = 3𝜇𝐿 − 3𝜌 𝛺2 + 𝜔2 − 2𝜖0𝜇0
2𝐻0

2𝜔2 + 𝜌𝛺2  

 

 
Fig. 1 Geometry of the problem 

 

The determinantal equation (17) can be decomposed into two algebraic equations of velocity, 𝑣 

𝑎0𝑣
6 + 𝑎1𝑣

4  +  𝑎2𝑣
2  +  𝑎3  =  0                                                                                                                   (18) 

and 𝑏0𝑣
6 +  𝑏1𝑣

4  +  𝑏2𝑣
2  +  𝑏3  =  0                                                                                                                     (19) 

where  𝑎0  =  𝑌𝜌𝑐𝑒 𝜌𝑘 𝜔2 − 𝜉  
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𝑎1 = 𝑌 𝛼𝜌𝑐𝑒𝜔
2 − 𝑘∗ 𝜌𝑘 𝜔2 − 𝜉 − 𝑘𝜔2𝜔𝑑  + 𝑋𝜌𝑐𝑒𝜔

2 𝜌𝑘 𝜔2 − 𝜉 − 𝑚𝛽𝜈𝑇∗𝜔2 + 𝛽2𝜌𝑐𝑒𝜔
2

+ 𝜈2𝑇∗𝜔2 𝜌𝑘 𝜔2 − 𝜉  

𝑎2  = 𝑋 𝛼𝜌𝑐𝑒𝜔
2 − 𝑘∗ 𝜌𝑘 𝜔2 − 𝜉 − 𝑘𝜔2𝜔𝑑  − 𝑌𝛼𝑘∗𝜔2 − 𝛽2𝑘∗𝜔2 + 𝛼𝜈2𝑇∗𝜔4  

𝑎3  = −𝑋𝛼𝑘∗𝜔4  

𝑏0  = 𝑌 𝜌𝑐𝑒𝜔
2𝜔𝑑 + 𝑚2𝑇∗                                                                                                                                                          

𝑏1 =  𝑋 𝜌𝑐𝑒𝜔
2𝜔𝑑 + 𝑚2𝑇∗  + 𝑌 𝑘 𝜌𝑘 𝜔2 − 𝜉 − 𝑘∗𝜔𝑑 + 𝑚𝛽𝜈𝑇∗ + 𝜈2𝑇∗𝜔2𝜔𝑑  𝜔2                                                

𝑏2  = [𝛼𝑘𝑌 + 𝑋 𝑘 𝜌𝑘 𝜔2 − 𝜉 − 𝑘∗𝜔𝑑 + 𝛽2𝑘]𝜔4   

𝑏3 = 𝑋𝛼𝑘𝜔6  
Using Cardan's method in equations (18) and (19), as Singh and Tomar [35], we obtain respectively 

         𝑍1
3 + 3𝐻1𝑍1 + 𝐺1 = 0                                                                                                                                      (20) 

and   𝑍2
3 + 3𝐻2𝑍2 + 𝐺2 = 0                                                                                                                                           (21) 

where 

𝑍1 = 𝑎0𝑣
2 +

𝑎1

3
, 𝐻1 =

𝑎0𝑎2

3
−

𝑎1
2

9
  𝑎𝑛𝑑  𝐺1 =

2𝑎1
3

27
−

𝑎0𝑎1𝑎2

3
+ 𝑎0

2𝑎3  

𝑍2 = 𝑏0𝑣
2 +

𝑏1

3
, 𝐻1 =

𝑏0𝑏2

3
−

𝑏1
2

9
  𝑎𝑛𝑑  𝐺1 =

2𝑏1
3

27
−

𝑏0𝑏1𝑏2

3
+ 𝑏0

2𝑏3  

The roots of the equation (20) and (21) are given by 

𝑍11 = 𝑆1 , 𝑍12 =
1

2
 −𝑆1 + 𝜏 3𝑇1 , 𝑍13 =

1

2
 −𝑆1 − 𝜏 3𝑇1 ;  

and  𝑍21 = 𝑆2 , 𝑍22 =
1

2
 −𝑆2 + 𝜏 3𝑇2 , 𝑍23 =

1

2
 −𝑆2 − 𝜏 3𝑇2  respectively  

where 𝑆1 = 𝑈1 + 𝑊1, 𝑇1 = 𝑈1 − 𝑊1, 𝑈1
3 =

1

2
 −𝐺1 +  𝐺1

2 + 4𝐻1
3 , 𝑊1 = −

𝐻1

𝑈1
; 

and 𝑆2 = 𝑈2 + 𝑊2, 𝑇2 = 𝑈2 − 𝑊2, 𝑈2
3 =

1

2
 −𝐺2 +  𝐺2

2 + 4𝐻2
3 , 𝑊2 = −

𝐻2

𝑈2
; 

 

Hence, the three roots of equations (18) and (19) are respectively given by 

𝑉1
2 =

1

𝑎0

 𝑆1 −
𝑎1

3
 , 𝑉11

2 =
1

𝑎0

 −
1

2
𝑆1 +

 3

2
𝜏𝑇1 −

𝑎1

3
 ,   

𝑉12
2 =

1

𝑎0
 −

1

2
𝑆1 −

 3

2
𝜏𝑇1  

𝑎1

3
                                                                                                                                         (22)  

and    𝑉2
2 =

1

𝑏0
 𝑆2 −

𝑏1

3
 ,  𝑉21

2 =
1

𝑏0
 −

1

2
𝑆2 +

 3

2
𝜏𝑇2 −

𝑏1

3
 , 

𝑉22
2 =

1

𝑏0
 −

1

2
𝑆2 −

 3

2
𝜏𝑇2 −

𝑏1

3
                                                                                                                                     (23)  

    

For real roots of 𝑈1 and 𝑈2 the above equations (22) and (23) represent the possible real velocities 𝑉1 and 𝑉2 as 

𝑉1
2 =

1

𝑎0

 𝑅𝑒 𝑆1 −
𝑎1

3
                                                                                                                                             (24) 

𝑉2
2 =

1

𝑏0

 𝑅𝑒 𝑆2 −
𝑏1

3
                                                                                                                                             (25) 

 

V. NUMERICAL RESULTS AND DISCUSSIONS 
The present study focuses on the effects of fibre reinforcing, rotation, magnetic field and void pores of the 

medium on the propagation of plane wave in a solid. For numerical discussion we have considered three sets of 

values of relevant parameters from the works of Othman et al.[22], Markham[38], Zorammuana  [39] as given 

below; 

𝜆 = 9.4 × 109𝑁. 𝑚−2 , 𝜇𝑇 = 1.89 × 109𝑁. 𝑚−2,  𝜇𝐿 = 2.45 × 109𝑁. 𝑚−2 , 𝜌 = 1.7 × 103𝐾𝑔. 𝑚−3,   
𝜆 = 5.65 × 109𝑁. 𝑚−2 ,  𝜇𝑇 = 2.46 × 109𝑁. 𝑚−2,  𝜇𝐿 = 5.66 × 109𝑁. 𝑚−2 , 𝜌 = 2.26 × 103𝐾𝑔. 𝑚−3      
𝜆 = 7.59 × 109𝑁. 𝑚−2,  𝜇𝑇 = 3.5 × 109𝑁. 𝑚−2,  𝜇𝐿 = 7.07 × 109𝑁. 𝑚−2 , 𝜌 = 1.6 × 103𝐾𝑔. 𝑚−3           
𝛼 = 3.668 × 10−4𝑁, 𝛽 = 1.13849 × 1011𝑁. 𝑚−2, 𝜉 = 1.475 × 1012𝑁. 𝑚−2 , 𝑘 = 1.753 × 10−15𝑁. 𝑚−2,      
𝛼∗ = −1.28 × 109𝑁. 𝑚−2 , 𝛽∗ = 0.32 × 109𝑁. 𝑚−2                                                                                                         

Using the above parameter values the velocities of plane wave propagation are found from equations (24) and 

(25) and the nature of plane wave propagation following GN-II and GN-III models have been examined.  

Numerical results based on the considered parameter values show that the wave velocities 𝑉1 and 𝑉2 have almost 

similar behaviour in respect of GN-II and GN-III models, as is evident from the graphs presented in Figs. 2 and 

3. It is clear that when 𝜔 is fixed 𝑉1  and 𝑉2  decrease with the increase of  𝛤 (Figs. 2(a),  2(c) and 3(a), 3(c)). 
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On the other hand when 𝛤 is fixed, 𝑉1 increases and 𝑉2 decreases with the increase of 𝜔 (Figs. 2(b), 2(d) and 

3(b), 3(d)). 

 

 
 

Figs. 2(e), 2(f) and 3(e), 3(f) show that when both 𝜔 and 𝛤 are fixed, increase of reinforcing parameter  𝜇𝐿 −
𝜇𝑇 decreases  𝑉1  and  𝑉2 . Figs. 4(a), 4(b) show that for fixed 𝜔 and 𝛤, 𝑉1 and 𝑉2 values in GN-III model 

exceed those in GN-II model. Fig. 5 indicates the effects of reinforcing parameter on wave velocities. 
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Fig. 2(f). Effect of reinforcing  parameter on wave velocity for G-N model II     

(w=0.2 and G=0.4)
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It is seen that for fixed 𝜔 and  𝛤, reinforcing decreases the wave velocity 𝑉1  for both the models GN-II and GN-

III. Fig. 6 gives an idea for the effect of temperature on wave velocities. It is found that for medium having no 

voids, the effect of temperature is to decrease 𝑉1   with the increase of magnetic field. 

 

VI. CONCLUSION 
In the present paper the numerical calculations carried out for wave's propagation thermally conducting fiber-

reinforced void media under the action of uniform magnetic field using Green-Naghdi theory of both type II and 

III leads to following conclusions.  

1.There are significant differences in the field quantities under Green-Naghdi theory of both type II and III. 

2.The magnetic effect has a significant effect on the distribution of the field quantities. 

3.The method that was used in this article is applicable to a wide range of problems in hydrodynamics. 

4.The effects of reinforcement, void, temperature are more influence Green-Naghdi theory of III than Green-

Naghdi theory of II. 

5.The all physical quantities are very depending on all types of velocities. 
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