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Abstract: In this work, we have successfully applied one of the most effective semi - empirical interatomic 

potentials called embedded atom method EAM to calculate some thermodynamics properties of refractory 

metals (Nb, Ta, Mo and W). Our theoretical calculated values for mono-vacancy formation energy are in 

excellent agreement with the available experimental values. Among these metals, the highest 
f

vE1  is obtained 

for W. It is well known that the value of the mono-vacancy formation energy of each metal is directly 

proportional to its cohesive energy. i.e. the lower the cohesive energy is, the lower the mono-vacancy formation 

energy and vice versa. The trend exhibited by these metals whose mono-vacancy migration energies were 

computed revealed that migration energies are small but cannot be negative. The mono-vacancy activation 

energy was obtained by summing the mono-vacancy formation energy and mono-vacancy migration energy 

together. For all the metals considered, W has the largest values for mono-vacancy formation energy, mono-

vacancy migration energy and mono-vacancy activation energy followed by Mo and then Ta. This could be as a 

result of parameter β used in the calculation. We used  8 as β for both W and Mo, while β = 6 for all other 

metals. The values for di-vacancy formation energy are larger than their corresponding mono-vacancy 

formation energy but still lower than corresponding cohesive energy of each metal. The binding energies were 

computed from mono-vacancy formation and di – vacancy formation energies. The obtained values for Nb and 

Ta metals are in good agreement with Zhang et al but there are no experimental values for these two metals. 

Experimental values are highly needed before conclusion can be drawn.  
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I. INTRODUCTION 
The resistance against deformation at high temperatures makes the refractory metals suitable against 

strong forces at high temperature, for example in jet engines, or tools used during forging. Refractory metals are 

used in lighting, tools, lubricants, nuclear reaction control rods, as catalysts, and for their chemical or electrical 

properties. It is good to have fundamental knowledge of structure and thermodynamics properties of these 

metals in order to optimise their uses. To accomplish this, atomistic simulation would be one of the most useful 

approaches to study these materials and obtain such knowledge. The size, the computational speed and accuracy 

of a potential must be taken into consideration while designing a good potential. The system size and 

computational speed are very important for modelling properties of materials especially the equilibrium 

properties. Another major factor that must be considered is the accuracy of the model. The model is expected to 

reproduce the properties of these materials as closely as possible. The computational speed is very important in 

materials science while high accuracy is germane in computational chemistry. 

The quality of any good interatomic potential is highly determined by the properties predicted during 

simulation. Among all these potentials, embedded atom method EAM which was developed by Daw and Baskes 

(1983) has the ability to predict considerable quality of the properties of metals and alloys. If a researcher is 

interested in high accuracy, first-principles results are good to be used, one can use either density functional 

theory or quantum-chemical method but these methods can only be applied to systems containing at most 

hundred atoms and they are much more expensive. Unlike first principle approaches, EAM cam be used in 

simulation of systems containing millions atoms in just nanoseconds. 

The EAM was firstly formulated by Daw and Baskes (1983) to study and obtain different properties of 

materials. Oh and Johnson (1989) developed EAM potentials for fcc, bcc and hcp, this was called analytic 

embedded atom method. A model for vanadium bcc metal using the Morse potential as the pair potential 

between atoms was presented by Foiles (1990). The model was used study various thermodynamic properties of 
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V. Wang and Boercker (1995) presented a potential for bcc metals. This potential was employed to obtain many 

anomalies displayed in the phonon spectra of bcc transition metals.  Also, Zhang et al. (1999) formulated 

another version of EAM potential called simple analytic EAM for some bcc metals and this was used to predict 

thermodynamic properties of binary alloys of these metals. Huiqiu et al. (2004) added a modified term M(P) to 

the total energy of Johnson’s analytic EAM model and the called it the modified analytic EAM (MAEAM) 

potential. The surface segregation and composition depth profiles of Al–Mg alloy were studied with Monte 

Carlo simulation and the MAEAM. Ahmad et al. (2004) and Akhter et al. (2005) used EAM potentials to 

present the thermal properties of noble metals Ag and Au which are in good agreement with the experimental 

results.  

Based on the pair-potential formulation of Wang and Boercker (1995) and analytic embedding energy 

of Johnson and Oh (1989), Wilson and Riffe (2012) developed a normalized EAM model, which reasonably 

predicted bulk vibrational properties associated with all alkali metals. They also applied the model to study the 

surface of Na (110), they identified surface localized modes and calculated directionally resolved Debye 

temperatures for near-surface planes of atoms. We employed the embedded-atom method and the tight binding 

second moment approximation model of cohesion to determine the models parameters (EAM and TB-SMA 

parameters) for Ta, Mo and W metals and their solid state electron densities were also determined (Matthew-

Ojelabi et al, 2017). These model parameters and electron densities with and without adjustment were used to 

determine dilute-limit heats of solution (unrelaxed and relaxed) of the binary alloys of Ta, Mo and W. The result 

we obtained shows how electron densities play a vital role in determining some of the properties associated with 

alloys and defects in metals.  

Similarly, we extended the modified analytical embedded atom method, MAEAM to the study of 

interatomic potentials for body centred cubic (bcc) transition metals (Popoola et al, 2017). Some thermodynamic 

properties of these metals were calculated. The mono-vacancy formation energy neither increases nor decreases 

as the lattice constant increases. Their computed value for mono-vacancy migration energy is lower than the 

result of ab initio calculation. They suggested that this could be due to the discrepancy in the modification term, 

fitting parameter and the contribution to the energy from many-body effects in the embedding function. Their 

computed value of mono-vacancy activation energy is lower at most point compare to some other result of ab 

initio calculation. Recently, Agunbiade et al (2017) applied EAM model to three alkali metals Na, K and Cs.  

We firstly determined the model parameters and electron densities which were later used to calculate some 

thermodynamics properties of these metals and their binary alloys. The values we obtained for the heats of 

solution of their binary alloys are in good agreement with the available experimental values. We reported that 

the values for heats of solution of these alloys are all positive indicating negligible solubility. 

In this work, the embedded atom method EAM is extended to theoretically study and calculate some 

thermodynamic properties  of refractory metals. The metals used in this study were chosen based on the 

availability of experimental data, their industrial and technological applications, and availability of some 

physical constants of metals that are required for computation. 

 

II. THEORY 
The total energy Etot of EAM model is divided into two distinct parts and it is written as 

)()(
2

1
i

FrE
ji

ijtot   


        (1) 

Etot is the total internal energy of the system. 

(rij) is the two-body potential (pairwise) interaction between atom i and atom j whose separation is given by rij.  

 

While F( i ) is the embedding  energy of atom i with the host electron density i  at  atom i due to all its 

surrounding atoms. And it is a measure of the atomic density in the neighbourhood of atom i that requires 

)( ijrf to be a monotonically decreasing function of rij. 

The background electron density i which will locally be determined for each particle and approximated as the 

sum of electron contributions from nearby particle is given by 

)( ij

ji

rf
i 



                              (2) 

)( ijrf is the atomic electron density at atom i due to atom j  as a function of the distance  between them.  
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The functional forms of )(rf and (r) are taken and fit to experimental data while F(  ) is strictly 

derived from universal equation of state for bcc metals. 

Firstly, the atomic electron density function )(rf  is given by 
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As expected, the electron density is expected to be directly proportional to the cohesive energy and inversely 

proportional to the atomic volume of the metals. 

As a result of this, the parameter ef  according to Johnson (1989) is taken as 


 c

e

SE
f           (4) 

 

S = 1 for all pure metals, EC is the cohesive energy and Ω is the atomic volume for pure elements. 

Secondly, the two-body (pairwise) potential )(r  for this work which is the modified form of Rose et al (1984) 

can be expressed as 
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 er1  is the first equilibrium nearest neighbour distance. e ,   and   are the adjustable model parameters that 

will later be determined. 

Combining equation (1) and (2) for monoatomic metallic perfect crystal of bcc and considering the first 

equilibrium neighbour distance ( er1 ) and the second neighbour distance    ( er2 ), we have   

)(3)(4)()( 21 ee rrFrE         (6)

)(6)(8)( 21 ee rfrfr         (7) 

Where er2   =   Z er1  and  
3

2
Z         (8) 

An exponentially decay electron density   is assumed to be 
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The equilibrium electron density e  is obtained by combining equation (4.3) & (4.9) at  r  = er1 , and is given 

as 

 )1(exp68  Zff eee        (10) 

According to Rose et al (1984) 
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B is the bulk modulus, Ω is the atomic volume and cE  is the cohesive energy of pure bcc metals.  

By combining equation (6) and (11) to have 
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By substituting 
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Apparently, the )(F presented in our present work is very simple with just three undetermined parameters. 

These model parameters ( ,   and e ) can be determined with the following equations 
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Substituting the expressions for )(rf , )(r  and )(F respectively from equations (3), (5) and (14) into 

equation (15) to (17) and considering their differentiations to yield 
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So far, all the model parameters for this work ef , e ,  ,  ,    and  can be determined using the physical  

input parameters cohesive energy, unrelaxed mono-vacancy formation energy, lattice constant and elastic 

constants (C11, C12 and C44) from which bulk modulus and Voigt average shear modulus are determined. With 

these model parameters, we now have a complete EAM model. The physical input parameters which are taken 

from different literatures are presented in table 1   

While all the EAM model parameters for this work ( ef , e ,  ,  ,    and  ) are presented  in table 2 

2.1Energy Calculations 

Mono-vacancy is formed by removing one atom from the central site of a crystal with N atoms and the 

formation energy of mono-vacancy 
f

vE1  can be calculated by 
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1N

totE  is the total energy of the crystal with mono-vacancy 

N

totE  is the total energy of the perfect crystal without mono-vacancy 

The mono-vacancy migration energy be determined using the diffusion coefficient of mono-vacancy and is 

given as  
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vD1 is the diffusion coefficient of mono-vacancy, 
0

1vD is the pre-exponential factor, 
m

vE1 is the mono-vacancy 

migration energy, kB is the Boltzman’s constant and T is the temperature. 

The mono-vacancy activation can be calculated from by summing both mono-vacancy formation and mono-

vacancy migration energies 
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Similarly, the di-vacancy formation energy is possible and this can equally be calculated by removing two atoms 

from a perfect crystal of each bcc metals which is given by 
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2N

totE  is the total energy of the crystal with di-vacancy 

N

totE  is the total energy of the perfect crystal without di-vacancy 

Another form of energy that can be calculated with this present model is the binding energy of di-vacancy. The 

binding energy is the difference between the mono-vacancy and di-vacancy formation energies. This is given as 
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The input physical parameters for refractory metals considered in this work are presented in table 1. The lattice 

constant 0a  is in Å, atomic volume Ω is in Å
3
, cohesive cE & vacancy formation E1v energies are in eV, while 

C11, C12, C44, B and G are in eV/Å
3
.  

 

Table 1: The Input Experimental Parameters for BCC Transition Metals 
 a0 

 [a] 

Ec  

[b] 

E1v  

[c, d] 

C11  

[d,e,f] 

C12 

 [d,e,f] 

C44  

[d,e,f] 

Ω B G 

Nb 3.3008 7.47 2.75 1.531 0.825 0.176 17.9816 1.0603 0.2470 

Ta 3.3026 8.10 2.95 1.650 0.988 0.516 18.0110 1.2087 0.4420 

Mo 3.1469 6.82 3.10 2.869 1.050 0.694 15.5818 1.6563 0.7800 

W 3.1650 8.66 3.95 3.231 1.269 0.981 15.8523 1.9230 0.981 

[a]   West (1984)   [b]    Kittle (1976)  [c]    Puska and Nieminen (1997) 

[d]   Hearmon (1983)      [e]    Simmons and Wang (1991)   [f] Mishra and Singh (1990). 

 

III. RESULTS AND DISCUSSION 
3.1results 

This section will be presenting all the results obtained in this research work. While using EAM, there 

are some model parameters that must be determined. So far, we have firstly determined all the model parameters 

for this work ef , e ,  ,  ,    and   ( table 2) using the physical input parameters; cohesive energy, 

unrelaxed mono-vacancy formation energy, lattice constant and elastic constants (C11, C12 and C44) from which 

bulk modulus and Voigt average shear modulus are determined.  

 

Table 2:  The calculated EAM model parameters for refractory metals 

 fe ϕe ξ α γ β 

Nb 0.4154 0.3877 6.1611 4.7928 4.8195 6 

Ta 0.4497 0.4342 8.1665 4.9182 6.2097 6 

Mo 0.4376 0.4458 10.4527 5.8358 7.8558 8 

W 0.5463 0.6232 10.0431 5.6286 7.5551 8 

 

Table 3:  Mono-Vacancy Formation Energy 
f

vE1 for refractory metals 

 Present 

model 

Exp. Data [a] EAM of Johnson [b] FS model   

[c] 

Nb 2.71 2.7 2.95 2.48 

Ta 2.93 3.1 2.95 2.87 

Mo 3.05 3.2 3.20 2.54 

W 3.95 3.6 3.95 3.62 

 

Table 4: Mono-Vacancy Migration Energy 
m

vE1  for refractory metals 

 Present 

model 

Exp. Data 

[a] 

EAM of Johnson [b] FS model [c] 

Nb 0.83 0.55 0.97 0.91 

Ta 0.78 0.70 1.15 1.22 
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Mo 1.41 1.35 1.62 1.32 

W 1.56 1.70 1.97 1.49 

 

Table 5:  Mono-Vacancy Activation Energy vQ1  for refractory metals 

 Present 

model 

Exp. Data  [a] EAM of Johnson [b] FS model   [c] 

Nb 3.54 3.7 3.85 3.39 

Ta 3.71 3.8 3.91 4.09 

Mo 4.46        4.5   [d] 4.54 3.86 

W 5.51 5.4 5.54 5.11 

[a] – Siegel et al. (1982)  [b] – Guellil and Adams (1992)   

[c] – Harder and Bacon (1986) [d] – Marier et al. (1979)    

 

Table 6:Di-Vacancy Formation Energy 
f

vE2
for refractory metals 

 Present model Exp. Data Zhang et al (1999) 

Nb 5.13 - 5.107 

Ta 5.51 - 5.466 

Mo 5.69 - 5.75 

W 7.45 - 7.32 

 

Table 7:  Di-Vacancy Binding Energy 
b

vE2
 for refractory metals 

 Present model Exp. Data Musada 

(1982) 

Zhang et al 

(1999) 

Nb 0.29 - 0.393 

Ta 0.35 - 0.434 

Mo 0.41 0.393 0.450 

W 0.45 0.451 0.580 

 

 
Figure 1 : The variation of two – body potential with relative distance for refractory metals 

 

 
Figure 2 : The variation of emdedding function with relative denstiy for refractory metals 
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Figure 3 : The variation of atomic electron density with relative distance for refractory metals 

 

3.2DISCUSION 

3.2.1Mono-Vacancy Formation Energy 
f

vE1   

 The formation energy of a vacancy reflects the bond strength of the solid. To calculate the mono-

vacancy formation energy, some steps are necessary to be taken. Firstly, there must be a perfect crystal, then 

remove an atom, later relax the system, now evaluate the potential energy and finally calculate the vacancy 

formation energy using equation (21) or equation (17) of EAM model described in the previous section. The 

mono-vacancy formation energies, 
f

vE1  for refractory metals are presented in table 3 together with the available 

experimental data and values obtained by other authors. It can be clearly seen from the two tables that our 

theoretical calculated values are in excellent agreement with the available experimental values. Among these 

metals, the highest 
f

vE1  is obtained for W. It is well known that the value of the mono-vacancy formation 

energy of each metal is directly proportional to its cohesive energy. i.e. the lower the cohesive energy is, the 

lower the mono-vacancy formation energy and vice versa. (Popoola et al., 2017) have previously calculated the 

mono-vacancy formation energies for bcc transition metals using modified analytical embedded atom method 

(MAEAM). Though, the results they obtained were in good agreement with the experimental data but the 

modification they used in MAEAM added a complexity to their calculation. The current EAM model used for 

this work is simple with no complexity. 

The vacancy formation energy value we obtained for Ta metal is 2.93eV and this values is smaller by 5.48% 

than the experimental value which is 3.1eV. Also, for Mo metal, we obtained 3.05eV which is as well smaller 

by 4.69% than the available experimental data for Mo (3.2eV). But for W metal, our calculated value which is 

3.95eV is higher by 9.7% than experimental value (3.6eV). The difference in each metal could be as a result of 

structural relaxation associated with vacancy formation energy.  

Also, our present calculated values are closer to experimental values than the values from other authors. For Ta 

and W metals, FS model also predicted lower values to experimental values, our calculated values for these two 

metals (Ta and W) are better than values from FS model. With these, we can say our obtained values are in 

excellent agreement with available experiment values. 

 

3.2.2Mono-Vacancy Migration Energy 
m

vE1   

 Migration energy for vacancy is the difference between the energy for saddle point and that of 

equilibrium site (Wangyu et al., 2002). According to vacancy mechanism for diffusion, an atom overcomes a 

potential barrier when it migrates from its original site to the vacancy site. The maximum point for the potential 

barrier (saddle point) is located at the mid-point of the migration path. Our theoretical calculated values for 

mono-vacancy migration energies for refractory metals are listed in table4. The available experimental data 

together with values obtained by different authors are also presented. The trend exhibited by these metals in 

table 4 whose mono-vacancy migration energies are computed revealed that migration energies are small but 

cannot be negative. The values predicted by Guellil and Adams (1992) using EAM model developed by Johnson 

are higher than the FS model used by Torrem and Gerl (1969). The present calculations are closer to the 

experimental values better than Guellil and Adams and even Torrem and Gerl calculations. It also good to know 

that the actual experimental values for 
m

vE1  are difficult to find. The values listed for experimental migration 
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energy are just calculations made by subtracting the experimental values of mono-vacancy formation energy 

from mono-vacancy activation energy. 

 

3.2.3Mono-Vacancy Activation Energy vQ1   

 The mono-vacancy activation energy is the sum of mono-vacancy formation energy and mono-

vacancy migration energy (equation 23). Our present calculations for mono-vacancy activation energy for 

refractory metals are shown in table 5. For better comparison, the available experimental data together with 

values from previous authors are also presented. For all metals considered in this work, W has the largest values 

for mono-vacancy formation energy, mono-vacancy migration energy and mono-vacancy activation energy 

followed by Mo and then Ta. This could be as a result of parameter β used in the calculation. We used β = 8 for 

both W and Mo, while β = 6 for all other  metals. It could be as a result of W, Mo and Ta belonging to members 

of refractory metals.  

  

3.2.4 Di-vacancy Formation Energy 
f

vE2   

 Di-vacancy formation energy is computed by similar method used in mono-vacancy formation energy. 

The only difference between them is the number of atom(s) removed from their perfect crystals. A single atom 

is needed to be removed in a perfect crystal to compute its mono-vacancy formation energy while two atoms 

must be removed to create vacancies in di-vacancy. Using equation (4.24), the di-vacancy formation energies 

are computed and listed in table 6 for these metals. The available experimental data are also listed. Two 

configurations are only considered, which are; the first-nearest-neighbour (nn) and the second-nearest-neighbour 

(nnn) di-vacancy. According to Zhang et al. (1994), for di-vacancy diffusion in bcc metals, the di-vacancy must 

migrate either by a one-step next-nearest neighbour (nnn) jump to the nearest-neighbour divacancy or by a two-

step jump, first to an intermediate metastable configuration and then to form a nearest-neighbour (nn) di-

vacancy. 

 During computation, there is little or no difference for each metal configuration between the first-

nearest-neighbour and second-nearest-neighbour, so just a single configuration is considered in this work.  

Finally, it is good to know that the values for di-vacancy formation energy are larger than their corresponding 

mono-vacancy formation energy but still lower than corresponding cohesive energy of each metal. 

 

3.2.5Di-vacancy Binding Energy 
b

vE2  

 The binding energies computed from mono-vacancy formation and di – vacancy formation 

energies using equation (25) are shown in table 7 for these metals. The obtained values for Nb and Ta metals are 

in good agreement with Zhang et al (1999) but there are no experimental values for these two metals. 

Experimental values are highly needed before conclusion can be drawn. The obtained values for Mo and W with 

the present model are in excellent agreement with the experimental values better than Zhang et al (1999). 

As observed for mono- vacancy and di-vacancy energise, W still have the highest values for the binding energy 

among these refractory metals.    

 

3.2.6The Two-body Potential Graph  
The two-body potentials for all the refractory metals (Nb, Ta, Mo and W) are shown in figure 5.1, it 

could be observed that the pair-potential function displaced steep repulsion interactions at short distances. While 

at large distances, weak attractions are observed and shallow wells at intermediate distances for all metals. The 

metals are expected to display some similar properties. W has the lowest distinct minimum curve among these 

metals, followed by Mo, then Ta and Nb in that order. The lowest minimum curve exhibited by W could be 

attributed to its thermal properties (highest melting and boiling points). 

 

3.2.7The Embedding Function Graph 

Figure 2 presents the embedding function graphs for refractory metals (Nb, Ta, Mo and W) The 

embedding functions can be seen to be slightly deviated from symmetrical parabolic function. It should be noted 

that there is an invariant transformation of EAM and because of this, any simultaneous transformation of   and 

F(  ) functions would not affect the overall embedding energies. Figure 2 follows the same trend for all the 

metals. The minimum curves for Mo and W overlap with Ta having the lowest minimum curve. 

 

3.2.8The Electron Density graph 

The variations of electron density with relative distance are in figure 3. As expected, the electron 

density decreases as the relative distance increases with the distinct atoms contributed little to the background 

electron density on the centre atom. The electron density displayed a very low background electron density at 
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large distances, the background electron density increased sharply as the distances approach to the first 

coordination layer. With this, we can easily say that the background electron density was mainly contributed by 

atoms in the first coordination layer. All the metals here follow same the trend. As their electron densities 

approach zero, they all converge and follow a straight line even with further increase in relative distance, they 

all still follow this straight line. 

 

III. CONCLUSION 
 In this research work, we have successfully applied one of the most effective semi - empirical 

interatomic potentials called embedded atom method to study some properties of refractory metals (Nb, Ta, Mo 

and W). The ability of these refractory metals to withstand high temperature makes them very useful in different 

applications. Our theoretical calculated values for mono-vacancy formation energy are in excellent agreement 

with the available experimental values. Among these metals, the highest 
f

vE1  is obtained for W. It is well known 

that the value of the mono-vacancy formation energy of each metal is directly proportional to its cohesive 

energy. i.e. the lower the cohesive energy is, the lower the mono-vacancy formation energy and vice versa.  

 We also obtained the mono-vacancy migration energies for these metals. The trend exhibited by these 

metals whose mono-vacancy migration energies are computed revealed that migration energies are small but 

cannot be negative. It is good to note that the values listed for experimental migration energy are just 

calculations made by subtracting the experimental values of mono-vacancy formation energy from mono-

vacancy activation energy. The mono-vacancy activation energy was also considered. This was obtained by 

summing the mono-vacancy formation energy and mono-vacancy migration energy together. For all metals 

considered in this work, W has the largest values for mono-vacancy formation energy, mono-vacancy migration 

energy and mono-vacancy activation energy followed by Mo and then Ta. This could be as a result of parameter 

β used in the calculation. We used β = 8 for both W and Mo, while β = 6 for all other metals. It could also be as 

a result of W, Mo and Ta belonging to members of refractory metals.   

 Finally, the di-vacancy formation energy is computed by similar method used in mono-vacancy 

formation energy. The only difference between them is the number of atom(s) removed from their perfect 

crystals. The values for di-vacancy formation energy are larger than their corresponding mono-vacancy 

formation energy but still lower than corresponding cohesive energy of each metal. The binding energies are as 

well computed from mono-vacancy formation and di – vacancy formation. The obtained values for Nb and Ta 

metals are in good agreement with Zhang et al (1999) but there are no experimental values for these two metals. 

Experimental values are highly needed before conclusion can be drawn.  
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