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Abstract: Initial and boundary value problems of the inhomogeneous Airy’s and generalized Airy’s differential 

equations are considered in this work. General solutions are expressed in terms of the Nield-Kuznetsov 

functions of the first and second kinds, and are computed when the forcing function is a constant or a variable 

function of the independent variable.  
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I. INTRODUCTION 

In their pioneering work on flow through porous layers, as governed by Brinkman’s equation, Nield 

and Kuznetsov [1] introduced the concept of transition layer, defined here as a porous layer of variable 

permeability imbedded between two constant permeability porous layers, or one that is bounded by a constant 

permeability on one side and free-space on the other. They modelled the flow through the transition layer using 

Brinkman’s equation with variable permeability using a permeability function that ingeniously reduced the 

governing equation to an inhomogeneous Airy’s differential equation with constant forcing function. Solution to 

the flow problem was then attained in terms of an integral function, )( xNi , they introduced and defined in 

terms of Airy’s functions of the first and second kind, and used asymptotic series representations of Airy’s 

functions of the first and second kind to evaluate the )( xNi function. 

The )( xNi function was subsequently studied extensively by Hamdan and Kamel [2] who documented 

its properties and extended its introduction to the integral function )( xKi  that arises in the solution of the 

inhomogeneous Airy’s equation with variable forcing function. The functions )( xNi and )( xKi  have since 

been recognized as the Nield-Kuznetsov functions. Representations of these functions in terms of both 

asymptotic and ascending series have been obtained by Alzahrani et al. [3, 4], who provided a comparison of the 

solutions to flow through the transition layer using both of these series representations. 

Abu Zaytoon et al. [5]  approached the problem of flow through transition layer by modelling its 

permeability using a function that reduced the governing Brinkman’s equation to the generalized 

inhomogeneous Airy’s differential equation, of index n, with constant forcing function, and recovered the 

solution obtained by Nield and Kuznetsov [1] by choosing n = 1. We point out here that the generalized 

homogeneous Airy’s differential equation has been extensively studied by Swanson and Headley [6]. In case of 

the generalized inhomogeneous Airy’s equation with constant forcing function, Abu Zaytoon et al. [5] 

expressed its general solution with the help of a generalized form of the Nield-Kuznetsov )( xNi function, 

referred to as the generalized )( xNi function (or )( xN
n

function), who also provided its series representation 

using series representations of the generalized Airy’s functions discussed in [6]. For the case of generalized, 

inhomogeneous Airy’s equation with variable forcing function, Alzahrani et al. [7] have recently provided a 

general solution in terms of a generalized form of the )( xKi  function, which they denoted by )( xK
n

, and 

derived appropriate series representations for its evaluation. Due to the arize of various forms of the Nield-

Kuznetsov functions, Alzahrani et al. [7] adopted the following acronyms: 
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(i) )( xNi and )( xKi  are termed the Standard Nield-Kuznetsov functions of the first- and second-kind, 

respectively. They arise in the solution to the inhomogeneous Airy’s equation with constant and variable forcing 

functions, respectively. 

(ii) )( xN
n

and )( xK
n

 are termed the generalized Nield-Kuznetsov functions of the first- and second-kind, 

respectively. They arise in the solution to the inhomogeneous generalized Airy’s equation of index n with 

constant and variable forcing functions, respectively. 

 

        The importance of the Airy’s and generalized Airy’s equations, and the above functions, in the modelling 

and solution of flow through porous layers, and their potential applications to other problems in mathematical 

physics motivates the current work in which we provide computations and analysis of initial and boundary value 

problems involving the inhomogeneous Airy’s and generalized Airy’s equations. Problem statements and 

solutions are provided for both constant and variable forcing functions in order to study the effects of the forcing 

functions on the solutions obtained.   

 

 

II. PROBLEM FORMULATION 
        Required to solve the generalized Airy’s inhomogeneous ordinary differential equation (ODE): 

)( yfuyu
n

                                                                                                                                             …(1) 

subject to the initial conditions (I.C.) 

)0(u  and  )0(u                                                                                                                               …(2) 

where  and  are known constants, or subject to the boundary conditions (B.C.) 

11
)( bau   and 

22
)( bau                                                                                                                              ...(3) 

where 
121

,, baa and 
2

b are real numbers. 

        In equation (1), n is a positive integer, prime notation denotes ordinary differentiation with respect to the 

independent variable y, and )( yf  is the forcing function. 

General solution to equation (1) is given by, [7]: 
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where 
2

1




n
m , n

c
1 , n

c
2  are arbitrary constants, )( yA

n
and )( yB

n
are the generalized Airy’s functions of 

the first- and second-kind, respectively, [6], and )( yK
n

is the generalized Nield-Kuznetsov function of the 

second-kind, defined by, [7] 
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with first derivative given by 












  )(

)sin(2
)()()()()()()(

00

yF
mm

dttAtFyBdttBtFyAyK

y

nn

y

nnn




                            …(6) 

wherein )()( yfyF  . When n=1, equation (1) reduces to the well-known Airy’s ODE whose general 

solution is given by, [7]: 

)()()(
21

yKiyBicyAicu                                                                                                                    …(7) 

where )( yAi  and )( yBi  are Airy’s functions of the first- and second-kind, 
1

c  and 
2

c  are arbitrary constants, 

and )( yKi  is the standard Nield-Kuznetsov function of the second-kind defined by, [7]: 
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with first derivative given by 
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When the forcing function is a constant, say )( yf , general solutions (4) and (7) reduce, respectively, to 
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and 

)()()(
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yNiyBicyAicu                                                                                                               …(11) 

where )( yN
n

is the generalized Nield-Kuznetsov function of the first kind and )( yNi  is the standard Nield-

Kuznetsov function of the first-kind defined, respectively, by, [7]: 

 

 

y

nn

y

nnn
dttAyBdttByAyN

00

)()()()()(                                                                                             …(12) 

and 

 

yy

dttAiyBidttBiyAiyNi

00

)()()()()( .                                                                                             …(13) 

First derivatives of )( yN
n

 and )( yNi are given, respectively, by 
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        In order to obtain complete solutions to the initial and boundary value problems, general solutions (4) must 

satisfy condition (2) for initial value problem and condition (3) for boundary value problem. This leads to 

determination of the arbitrary constants appearing in (4). In what follows, the arbitrary constants are determined 

for cases of constant and variable forcing functions, for the initial and boundary value problems. 

 

III. SOLUTION TO THE INITIAL VALUE PROBLEMS (IVP) 
        Using initial condition (2) in the general solution (4) results in the following values for the arbitrary 

constants n
c

1  and n
c

2 : 
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Upon substituting (16) and (17) in (4), solution to the IVP is completely determined. 

        When the forcing function is of the form )( yf , where  is a specified constant, n
c

1  and n
c

2  take 

the following forms: 
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Upon substituting (18) and (19) in (7), solution to the IVP is completely determined. 

 

IV. SOLUTION TO THE BOUNDARY VALUE PROBLEMS (BVP) 
        Using boundary condition (3) in the general solution (4) results in the following values for the arbitrary 

constants n
c

1  and n
c

2 : 
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Upon substituting (20) and (21) in (4), solution to the BVP is completely determined. 

When the forcing function is )( yf , where  is a specified constant, n
c

1  and n
c

2  take the following 

forms: 
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Upon substituting (22) and (23) in (7), solution to the BVP is completely determined. 

 

V. COMPUTATIONS OF SOLUTIONS TO IVP AND BVP 
V.1. Series Expressions for the Generalized Functions 

        Determination of values of the arbitrary constants, appearing in the IVP and BVP, and the evaluation of 

their solutions at particular values of the independent variable, y, necessitates evaluations of the standard and 

generalized Nield-Kuznetsov functions at the given values of y.  

At the outset, the following values of the Nield-Kuznetsov functions at y = 0 have been obtained from their 

definitions, equations (5), (6), (8), (9), and (12)-(15), and used in deriving expressions (16)-(23) of the arbitrary 

constants: 
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        Computations of the Airy’s, Generalized Airy’s, the standard and generalized Nield-Kuznetsov functions 

and their derivatives at any value of the independent variable y, are discussed in what follows. 

The generalized Airy’s functions have been shown to have the following power series expansions [6]: 

)()()(
21

ygygyA
nnnnn

                                                                                                                   …(25) 

mygygyB
nnnnn

/)]()([)(
21

                                                                                                      …(26) 

)1(/)(
1

mm
m

n



                                                                                                                                …(27) 

)(/)( mm
m

n
                                                                                                                                        …(28) 






 


j

p

nj

j

j

n

mpp

y
myg

1

)2(

1

2

1

)(
1)(                                                                                                           …(29) 

]
)(

1[)(

1

)2(

1

2

2 




 


j

p

nj

j

j

n

mpp

y
myyg .                                                                                                   …(30) 

        Equations (25)-(30) can evaluated at y = 0 to generate the values below for Airy’s and generalized Airy’s 

functions and their first derivatives, where the values of Airy’s functions and first derivatives at y = 0 are 

obtained using n=1 and m=1/3, (cf. [2,5,7]): 
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        The generalized Airy’s functions, given in equations (25) and (26), above, have been used by Alzahrani et 

al. [3,7] to derive the following series expressions for the generalized Nield-Kuznetsov functions )( yN
n

 and 

)( yK
n
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        Equations (24)-(38) are used to compute the generalized Airy’s and generalized Nield-Kuznetsov functions 

appearing in the solutions to the IVP and BVP. Computations are illustrated in the following numerical 

experiment. 

V.2. Numerical Experiment 

        For constant forcing function  /1)( yf  and  /1)( yf , and for variable forcing 

functions yyf )( , 
2

)( yyf   and yyf sin)(  , suppose it is desired to solve equation (1) subject to 

the initial conditions 1)0(,2)0(  uu  and subject to the boundary conditions .2)1(,1)0(  uu Then, 

using equations (24)-(38), the integral functions appearing in expressions (16)-(23) for the arbitrary constants. 

Solutions (4) and (7) to IVP, and (10) and (11) to BVP, are then evaluated and plotted over the interval 

10  y   for various values of generalized Airy’s parameter n, as discussed in the next section. 

 

VI. RESULTS AND DISCUSSION 
VI.1. Solution to Airy’s Equation with Initial Values 

        When n = 1, equation (1) is the well-known Airy’s differential equation. In this case, solutions (7) and (11) 

with initial conditions and with either constant or variable forcing functions result in the same values for the 

arbitrary constants, computed using expression (16)-(19): 
1

c  = 0.8848298434, 
2

c = 2.741563801. Solutions (7) 

and (11) are illustrated graphically in Fig. 1(a) and 1(b). For constant forcing functions, Fig. 1(a) illustrates 

solution (11) and shows an exponential increase in )( yu  over the interval 10  y  for both /1)( yf , 

with a sharper increase when /1)( yf . It is noted that the solutions obtained here using the discussed 

procedure is an alternative method to the solutions obtained for the same problem using Scorer functions, [2]. 

        Fig. 1(b) illustrates solution (7) for the variable forcing functions yyf )( , 

2
)( yyf  and yyf sin)(  , and shows the relative positions of the exponentially increasing curves for the 

functions tested. Solution curves are close to each other due to the closeness of the values of the functions over 

the interval 10  y . For larger values of y, it is expected that the solution curve for 
2

)( yyf   will 

intersect the other two curves and grow exponentially faster, relative to the other two curves. 
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Fig. 1(a) Solutions to Airy’s IVP with Constant Forcing Function /1)( yf  

 
Fig. 1(b) Solutions to Airy’s IVP with Variable Forcing Function )( yf  

 

VI.2. Solution to Airy’s Equation with Boundary Values 

        In this case, solutions (7) and (11) with boundary conditions and with either constant or variable forcing 

functions result in values for the arbitrary constants shown in Table 1. These have been computed using 

expressions (20)-(23). 

Table 1. Values of arbitrary constants in the solution to BVP involving Airy’s equation. 

)( yf  
1

c  
2

c  

/1  0.2327830325 1.491812929 

/1  -0.3626315184 1.835575680 

y  0.2417608772 1.486629567 

2
y  

0.08697595842 1.575994682 

ysin  0.2270128925 1.495144321 

 

        Solutions (7) and (11) are illustrated graphically in Fig. 2(a) and 2(b). For constant forcing functions, Fig. 

2(a) illustrates solution (11) and shows the relative positions of the solution curves, and how the solutions 

increase, over the interval 10  y  for both /1)( yf . Fig. 2(b) illustrates solution (7) for the variable 

forcing functions yyf )( , 
2

)( yyf   and yyf sin)(  , and shows the relative positions and closeness 

of the solution curves for the functions tested. Again, solution curves are close to each other due to the closeness 

of the values of the functions over the interval 10  y . In both cases of constant or variable forcing 

functions, solutions )( yu  are higher for functions with lower values of y. In other words, over the interval 

10  y , )( yu  when /1)( yf  is less than )( yu  when /1)( yf . The same conclusion is holds 

for variable forcing functions. 
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Fig. 2(a) Solutions to Airy’s BVP with Constant Forcing Function /1)( yf  

 
 

Fig. 2(b) Solutions to Airy’s BVP with Variable Forcing Function )( yf  

 

VI.3. Solution to Generalized Airy’s Equation with Initial Values 

        In order to study the effects of increasing the generalized Airy parameter n on the solution to the 

inhomogeneous generalized Airy’s equation with initial conditions, solution to equation (1) is evaluated for n = 

1, 2, 3, 4, 5 and 10. For the initial value problem with constant forcing function, expressions (18) and (19) for 

the arbitrary constants 
n

c
1

 and 
n

c
2

 are evaluated for various values of n and shown in Table 2. Solutions (10) 

for 
n

u  are evaluated and plotted for each of the constant functions /1)( yf  in Fig. 3(a,b) and 4(a,b). 

Fig. 3(a,b) illustrate 
n

u  for /1)( yf  and the various values of n, while Fig. 4(a,b) illustrate 
n

u  for 

/1)( yf  and the various values of n. For visual clarity, the figures group the cases of n = 1,2,3 in one 

graph and n = 4,5,10 in another graph. All of these graphs show the relative positions of the solution curves with 

increasing n, and demonstrate the decrease in 
n

u  with increasing n over the interval 10  y , with larger 

decrease as y increases. This pattern persists for both constant forcing functions considered. 

Table 2. IVP Values of n
c

1  and n
c

2 for different values of n and constant or variable )( yf . 

 




1
)( yf  

1n  
n

c
1 0.88482984; 

n
c

2 2.741563801 

2n  
n

c
1 0.9023084857; 


n

c
2 3.014847595 
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3n  
n

c
1 1.051988482; 


n

c
2 3.303169579 

4n  
n

c
1 1.272537560; 


n

c
2 3.582773032 

5n  
n

c
1 1.538574592; 


n

c
2 3.849602302 

10n  
n

c
1 3.224800671; 


n

c
2 5.014277165 

 

 

 
Fig. 3(a) Solutions to Generalized Airy’s IVP with Constant Forcing Function /1)( yf  and n = 1, 2 and 3. 

 
Fig. 3(b) Solutions to Generalized Airy’s IVP with Constant Forcing Function /1)( yf  and n = 4, 5 and 

10. 

 
Fig. 4(a) Solutions to Generalized Airy’s IVP with Constant Forcing Function /1)( yf  and n = 1, 2, 3. 
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Fig. 4(b) Solutions to Generalized Airy’s IVP with Constant Forcing Function /1)( yf  and n = 4, 5, 10. 

        For the initial value problem with variable forcing functions, expressions (16) and (17) for the arbitrary 

constants 
n

c
1

 and 
n

c
2

 are evaluated for various values of n and shown in Table 2 for each of the variable 

forcing functions considered. Solutions (4) for 
n

u  are evaluated and plotted in Fig. 5(a,b), 6(a,b), 7(a,b) and 

8(a,b).  

        Fig. 5(a) illustrates 
n

u  for n = 1 (namely, solution to Airy’s equation) and Fig. 5(b) illustrates 
n

u  for n = 

10, for various variable forcing functions. These figures demonstrate the similarity in qualitative behaviour of 

the solutions to Airy’s and generalized Airy’s equations for the different forcing functions tested.  

        Fig. 6(a,b), 7(a,b), 8(a,b) illustrate 
n

u for yyf )( , 
2

)( yyf   and yyf sin)(  , respectively, and 

the various values of n. Again, for visual clarity, the figures group the cases of n = 1,2,3 in one graph and n = 

4,5,10 in another graph. All of these graphs show the relative positions of the solution curves with increasing n, 

and demonstrate the decrease in 
n

u  with increasing n over the interval 10  y , with larger decrease as y 

increases. This pattern persists for all forcing functions considered. 

 
 

Fig. 5(a) Solutions to Airy’s IVP, n = 1, with Various Variable Forcing Functions )( yf  
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Fig. 5(b) Solutions to Generalized Airy’s IVP with Various Variable Forcing Functions )( yf  and n = 10 

 

 
Fig. 6(a) Solutions to Generalized Airy’s IVP with yyf )(  and n = 1, 2, and 3 

 
 

Fig. 6(b) Solutions to Generalized Airy’s IVP with yyf )(  and n = 4, 5, and 10 
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Fig. 7(a) Solutions to Generalized Airy’s IVP with
2

)( yyf   and n = 1, 2, and 3 

 

 

Fig. 7(b) Solutions to Generalized Airy’s IVP with
2

)( yyf   and n = 4, 5, and 10 

 
Fig. 8(a) Solutions to Generalized Airy’s IVP with yyf sin)(   and n = 1, 2, and 3 

 
Fig. 8(b) Solutions to Generalized Airy’s IVP with yyf sin)(   and n = 4, 5, and 10 

 

VI.4. Solution to Generalized Airy’s Equation with Boundary Values 

         In order to study the effects of increasing the generalized Airy parameter n on the solution to the 

inhomogeneous generalized Airy’s equation with boundary conditions, solution to equation (1) is evaluated for 

n = 1, 2, 3, 4, 5 and 10. For the boundary value problem with constant forcing function, expressions (22) and 

(23) for the arbitrary constants 
n

c
1

 and 
n

c
2

 are evaluated for various values of n and shown in Table 3. 

Solution (10) for 
n

u  is evaluated and plotted for the constant functions /1)( yf . Fig. 9(a) illustrates 

n
u  for n = 1 (namely, solution to Airy’s equation) and Fig. 9(b) illustrates 

n
u  for n = 10, for the constant 

forcing functions /1)( yf . These figures demonstrate the similarity in qualitative behaviour of the 

solutions to Airy’s and generalized Airy’s equations. Fig. 10(a,b) and 11(a,b) illustrate 
n

u for /1)( yf  
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and /1)( yf , respectively, for various values of n. Again, for visual clarity, the figures group the cases 

of n = 1,2,3 in one graph and n = 4,5,10 in another graph. All of these graphs show the relative positions of the 

solution curves with increasing n, and demonstrate the increase in 
n

u  with increasing n over the interval 

10  y . This pattern persists for both constant forcing functions considered. 

Table 3. BVP values of n
c

1  and n
c

2 for different values of n and constant )( yf . 

 




1
)( yf  




1
)( yf  

1n  
n

c
1 0.2326261442; 

n
c

2 1.491903508 
n

c
1 -0.3624746303; 

n
c

2 1.83548510 

2n  
n

c
1 -0.09860910126; 

n
c

2 1.782305479 
n

c
1 -0.9013843510; 

n
c

2 2.183693094 

3n  
n

c
1 -0.3002242867; 

n
c

2 2.02108094 
n

c
1 -1.298897435; 

n
c

2 2.467701154 

4n  
n

c
1 -0.4351366251; 

n
c

2 2.228785943 
n

c
1 -1.622328325; 

n
c

2 2.713454925 

5n  
n

c
1 -0.5290973414; 

n
c

2 2.415544415 
n

c
1 -1.899826909; 

n
c

2 2.933631495 

10n  
n

c
1 -0.7008235147; 

n
c

2 3.174908784 
n

c
1 -2.950042667; 

n
c

2 3.824202427 

 

 
Fig. 9(a) Solutions to Airy’s BVP with Constant Forcing Functions  /1)( yf  

 
Fig. 9(b) Solutions to Generalized Airy’s BVP with Constant Forcing Functions  /1)( yf ; n = 10 
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Fig. 10(a) Solutions to Generalized Airy’s BVP with Constant Forcing Function  /1)( yf  and n = 1, 

2, and 3 

 

 
Fig. 10(b) Solutions to Generalized Airy’s BVP with Constant Forcing Function  /1)( yf  and n = 4, 

5, and 10 

 
Fig. 11(a) Solutions to Generalized Airy’s BVP with Constant Forcing Function  /1)( yf  and n = 

1, 2, and 3 

 
Fig. 11(b) Solutions to Generalized Airy’s BVP with Constant Forcing Function  /1)( yf  and n = 

4, 5, and 10 
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         For the boundary value problem with variable forcing functions, expressions (20) and (21) for the arbitrary 

constants 
n

c
1

 and 
n

c
2

 are evaluated for various values of n and shown in Table 4 for each of the variable 

forcing functions considered. Solutions (4) for 
n

u  are evaluated and plotted in Fig. 12(a,b), 13(a,b), 14(a,b) 

and 15(a,b).  

        Fig. 12(a) illustrates 
n

u  for n = 1 (namely, solution to Airy’s equation) and Fig. 12(b) illustrates 
n

u  for n 

= 10, for the three variable forcing functions considered. These figures demonstrate the similarity in qualitative 

behaviour of the solutions to Airy’s and generalized Airy’s equations for all forcing functions tested. When n 

=1, solution curves tend to be of parabolic shape with higher curvature than for the case of n = 10. This might 

indicate that for values of n higher than 10 the velocity profile tends to be a linearly increasing function. 

        Fig. 13(a,b), 14(a,b) and 15(a,b) illustrate 
n

u for yyf )( , 
2

)( yyf   and yyf sin)(  , 

respectively, and the various values of n. Again, for visual clarity, the figures group the cases of n = 1,2,3 in one 

graph and n = 4,5,10 in another graph. All of these graphs show the relative positions of the solution curves with 

increasing n, and demonstrate the increase in 
n

u  with increasing n over the interval 10  y . This pattern 

persists for all forcing functions considered. In addition, with increasing n the solution curves tend to be closer 

together, thus indicating that n has a greater influence on the solution curves than the form of forcing function.  

 

Table 4. BVP values of n
c

1  and n
c

2 for different values of n and variable )( yf . 

 yyf )(  2
)( yyf   

yyf sin)(   

1n  
n

c
1 0.2413637726 


n

c
2 1.486858836 


n

c
1 0.08664877402 


n

c
2 1.576183581 


n

c
1 0.2266598861 


n

c
2 1.495348129 

2n  
n

c
1 -0.08366104386 


n

c
2 1.774831441 


n

c
1 -0.2930912902 


n

c
2 1.879546565 


n

c
1 -0.1037847989 


n

c
2 1.784893318 

3n  
n

c
1 -0.2797513670 


n

c
2 2.011925176 


n

c
1 -0.5406919975 


n

c
2 2.128621374 


n

c
1 -0.3049613350 


n

c
2 2.023199417 

4n  
n

c
1 -0.4095720003 


n

c
2 2.218349228 


n

c
1 -0.7200119992 


n

c
2 2.345085827 


n

c
1 -0.4396598316 


n

c
2 2.230632534 

5n  
n

c
1 -0.4987323184 


n

c
2 2.404067516 


n

c
1 -0.8573188742 


n

c
2 2.539600494 


n

c
1 -0.5335568124 


n

c
2 2.417229937 

10n  
n

c
1 -0.6486050131 


n

c
2 3.159834601 


n

c
1 -1.237368590 


n

c
2 3.329796007 


n

c
1 -0.7060034923 


n

c
2 3.176404117 
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Fig. 12(a) Solutions to Airy’s BVP with Variable Forcing Functions )( yf  

 
Fig. 12(b) Solutions to Generalized Airy’s BVP with Variable Forcing Functions )( yf  

 
Fig. 13(a) Solutions to Generalized Airy’s BVP with yyf )( , n = 1, 2, and 3 

 

 
Fig. 13(b) Solutions to Generalized Airy’s BVP with yyf )( , n = 4, 5, and 10 
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Fig. 14(a) Solutions to Generalized Airy’s BVP with
2

)( yyf  , n = 1, 2, and 3 

 

 

Fig. 14(b) Solutions to Generalized Airy’s BVP with
2

)( yyf  , n = 4, 5, and 10 

 

 
Fig. 15(a) Solutions to Generalized Airy’s BVP with yyf sin)(  , n = 1, 2, and 3 
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Fig. 15(b) Solutions to Generalized Airy’s BVP with yyf sin)(  , n = 4, 5, and 10 

 

VII. CONCLUSION 
        In this work we provided analysis and computations of the inhomogeneous generalized Airy’s ordinary 

differential equation with Airy’s index n, subject to initial and boundary conditions. The forcing functions 

chosen are either constant ( kyf /1)(   ) or variable )sin)(;)(;)((
2

yyfyyfyyf  . The 

generalized Airy’s equation reduces to Airy’s equation when n = 1. General solutions to the inhomogeneous 

generalized Airy’s equation have been expressed and evaluated in terms of the generalized Nield-Kuznetsov 

functions of the first-kind (for constant forcing functions) and second-kinds (for variable forcing functions). 

When n = 1, the generalized Nield-Kuznetsov functions reduce to the standard Nield-Kuznetsov functions of the 

first and second kinds. 

Solutions have evaluated using computational procedures based on series expressions for the generalized Airy’s 

functions and for the Nield-Kuznetsov functions. Arbitrary constants and the solutions are tabulated or graphed 

in this work, and support the following conclusions. 

(a) Values of the arbitrary constants in the case of initial value problem are independent of the forcing function 

in Airy’s and generalized Airy’s equation, but are dependent on Airy’s index n.  

(b) Values of the arbitrary constants in the case of boundary value problem depend on both the forcing function 

and Airy’s index. 

(c) For both the initial and boundary value problems with constant or variable forcing functions, solutions are 

increasing over the interval 10  y , with exponentially varying solution curves for the initial value 

problem, regardless of the form of forcing function. 

(d)  With decreasing n, solution curves for the initial value problem experience sharper increase with 

increasing y. 

(e) With increasing n, solution curves for the boundary value problem experience sharper increase with 

increasing y. 
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