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ABSTRACT 
Existence of extremal fixed points of A + B is obtained in ordered Banach spaces. Some applications to two- point boundary 

value problems in ordinary differential equations are discussed. 
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1. INTRODUCTION 

Krasnoselskii  [2] proved the existence of fixed points of    A + B  in closed convex Banach spaces  while many mathematician  

had obtained its extremal fixed points in ordered Banach spaces. Here we generalize some results of   [1. 

Let X be a Banach space and K a cone in X. Let    be a partial ordering defined by K i.e. for x, y in X, x  y  if  y - x  K.  A 
cone K is said to be regular, if every increasing and bounded in order sequence has a limit and normal if there exists  N > 0 such 

that   0    x    y     implies  || x ||  N || y ||.  The details about cone and their properties may be found in  [1].  

    Let x0, y0 X with  x0   y0, the set   [x0,y0]  =  {xX: x0  x   y0}     

is called order interval in X.   

A mapping T: D   X  X is said to be increasing if 1x   2x implies  

T 1x   T 2x . T is said to be a nonlinear contraction if there exist a lower semi continuous real function  with      (r) <  r,    r > 

0 satisfying  

 || Tx –Ty||     ( ||x –y || )  , for all x, y in D.                                  (1) 

A mapping T is said to be condensing if   (T (S)) <   ( S ) where  S  D and   is Kuratowskii’s  measure of noncompactness . 

It is evident that if T is completely continuous then it is condensing. 

      

2. FIXED POINT THEOREMS. 

Theorem 2.1:  Let x0, y0 X, x0 < y0 and A,B:[x0,y0]X  satisfy the following conditions: 

  (H1)   A is a nonlinear contraction, 

  (H2)   Ax + By  [x0, y0] for x, y [x0,y0] 
  (H3)   (I - A)-1B is increasing where I denote an identity operator 

  (H4)   B is semi continuous i.e. xn x strongly 

                     Bxn Bx weakly. 

            Suppose that the cone K in the Banach space X is regular. Then the mapping A + B has maximal and minimal fixed  

points in [x0, y0]. 
 Proof:   Assume  T = (I - A)-1B,  the existence of T is guaranteed by hypothesis (H1). Claim that T maps [x0, y0]  into itself.  For 

fixed y  [x0, y0] define a mapping Ay on  [x0,y0] by  
Ay (x) = Ax + By                                   (2) 

  where x[x0, y0].  Hypothesis (H2) implies that   Ay   maps [x0, y0] into itself moreover for x1, x2   [x0,y0] 

||Ay (x1) - Ay (x2)||      (||x1-x2||) 

and hence   Ay   is a nonlinear contraction. Therefore Ay has a unique fixed point y  [x0, y0] such   that Ay ( y  ) = y  .  Now 

for x  [x0, y0], 

Tx = y           Ay + Bx = y             Ax (y) = y 

But Ax has unique fixed point in [x0, y0] and hence Tx   [x0, y0]. Therefore T maps [x0,y0] into itself.  
       Now consider the sequences  {xn} and {yn} defined by 

 xn+1  = Txn  and  yn+1 =  Tyn      (3) 

Hypothesis (H3) implies that  

     x0  ≤  x1 ≤ x2  ≤  …..≤   xn ≤ ….≤   yn ≤ ……y1 ≤ y0    (4) 

 Since K is regular and sequences {xn} and {yn} are bounded in order, these sequences converge to x* and y* respectively. 
Hypothesis (H4) implies that T is semi continuous and so Tx*= x* and Ty*= y*. The fixed points of T are also fixed points of A 

+ B. Therefore x* and y* are fixed points of A+B. 
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   If x is any fixed point of A + B then x0 ≤ x ≤ y0.  Since T is increasing, x1 ≤ x ≤ y1, and by induction xn ≤ x  ≤  yn for n = 

0,1,2,3…Taking the limits, we obtain x* ≤ x  ≤  y*.  Thus x* and y* are minimal and maximal fixed points of  A + B. This 

completes the proof.  

 Corollary 2.1:  Let the conditions of Theorem 2.1 be satisfied. Suppose  A  + B  has only one fixed point x in [x0,y0]. Then for 

any u0  [x0,y0], the sequence  
       un+1 =  Aun+1 + Bun.      (5) 

converges to x.   i.e. || un - x || → 0   (n → ∞). 

 

Proof: Define a mapping T on [x0, y0] as in Theorem 2.1. Then the sequence (5) can be obtained as the successive iterates  
    un+1 = Tun. 

Since   x0 ≤ u0 ≤ y0 and  T  is increasing, xn  ≤  un  ≤  yn. By hypothesis, x is the only fixed point of T and hence x* = x  = y*  

where  x* and  y* are limits of sequences {Txn} and  {Tyn}. Cone K is regular implies that K is normal. So by normality of cone 

and  Theorem 2.1, it follows that      un → x. 

 

Theorem 2.2:  Let the conditions (H1) and (H2) of Theorem 2.1 be satisfied. If B is completely continuous and  K  is normal then  

A + B has a fixed point in [x0, y0]. 

Proof: Define a mapping T as in Theorem 2.1. Therefore T maps      [x0, y0] into itself. Since (I - A)
-1 

is continuous and B is 

completely continuous, T is also completely continuous. Moreover K is normal and hence order interval [x0, y0] is closed convex 

and bounded. Existence of fixed point of T is now guaranteed by Schauder’s  theorem. Hence        A + B has a fixed point. 

 
Theorem 2.3:  Assume conditions (H1) – (H3) of theorem 2.1. If B is condensing and K is normal then A + B has a fixed point. 

Proof:  Define a mapping T as in Theorem 2.1. For fixed u0  [x0, y0] define a sequence {un} by   un+1  =  Tun.    Let S = {u0, u1, 
u2…}  

              S = T (S)  {u0}. 

Since  (I - A)-1 is continuous and B is condensing, T   is also condensing. 

 Hence  (S) = (T (S)) <  (S). Therefore  (S) = 0. This implies that S is relatively compact. Hence there exists a subsequence {

k
n

u }of {un} such that
k

n
u → x*. But K is normal and so un x*. Taking limits n→ ∞ in un = Tun-1, we get x* = Tx* since T is 

continuous. Hence x* is a desired fixed point of A + B.  

 

Theorem 2.4:  Assume conditions  (H1) - (H4) of Theorem 2.1. If B is condensing and K is normal then A  + B has minimal and 

maximal fixed points. 

  Proof:   Define a mapping T  as in the proof of Theorem 2.1. Then the sequences {xn} and {yn} defined by  (3) converge  

respectively to x* and y*. It is obvious that x* ≤ y* and x* ,y* are  fixed points of T. By similar procedure as expressed in 
Theorem 2.1, it can be proved that x* and y* are minimal and maximal fixed points of A+B. 

  

Corollary 2.2:  Let the condition of Theorem 2.4 be satisfied. Suppose    A + B has only one fixed point x  [x0, y0]. Then for 

any u0  [x0, y0] the sequence of iterates defined by  (5)  converges to  x.  i.e.  ||un-x||→ 0   as (n→ ∞).   
The proof of this corollary is similar to that of corollary 2.1.  

 Remark-1: Consider the condition 

(H5) :  A is linear and  
kA , for some  k   N, is nonlinear contraction  on  [x0, y0]. 

If Ay is defined by  (2) then for any x  [x0, y0]  using linearity of A, it follows that 

                          k
yA  (x) = 

kA  x + (I+A+A2+…+Ak-1) By.  

Thus for x1, x2   [x0, y0],  

   || k
yA (x1) - 

k
yA (x2)||       (||x1 - x2||) 

which shows that k
yA  is a nonlinear contraction and hence Ay has a unique fixed point. This guarantees the existence of 

mapping T as defined in the proof of Theorem 2.1. The definition of Ay and T shows that T maps    [x0, y0] into itself. Thus 

Theorem 2.1 holds even if the condition (H1)  is replaced by  (H5). 

 

Remark 2:  Theorem 2.1.1 of  [2]  appears as a special case of Theorem 2.1, which may be obtained by putting A ≡ θ. 
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Remark 3:  The condition  (H3) had been imposed in the  Theorem 3 of [3]. This condition can be excluded to obtain the result 

of Theorem 3 of [3] as seen from Theorem 2.2.  Our approach to prove the Theorem is quite simple and different from that of 

[3]. 

 Remark 4:  Corollary 2.1.1 of [2] is a special case of Corollaries 2.1 and 2.2. 

  Remark 5: Theorem 2.2 holds even if the condition (H1) is replaced by (H5).       

 

3. APPLICATIONS 
     Let X = C[I , R] be the set of continuous real valued function defined on I = [0, 1] with supremum norm and  K = {x  X :x(t) 

,0 0   t   1}. Then X is a Banach space   and K is a cone in X. Moreover K is normal and  regular. Consider the two-point 

boundary value problem of ordinary differential equation  

  - x   =  f (t, x) +  g(t, x)                               (6) 

  x (0)= 0 = x (1)                                            (7) 

where  ,  are parameters and f, g: I x X   X. The functions u and v,   in C(2) [I, R] are said to be respectively lower and 

upper solutions of (6) if 

              -  u  (t) ≥  f (t, u (t)) +   g(t, u(t))                                     (8) 

and  

                -  v  (t) ≤  f (t, u(t)) +   g(t, u(t)) .                             (9) 

 We need the following assumptions: 

    (A1)   f (t, x) satisfies the Lipschitz condition in x with Lipschitz    constant L i.e. there is a constant L > 0 such that  

                            | f(t, x1) – f(t, x2) |  ≤  L | x1-x2 |. 

   (A2)    g(t, x)  is continuous on 0 ≤ t ≤ 1. 

   (A3)    f(t, x) and g(t, x) are increasing with respect to x  i.e.  for  

          0 ≤ t  ≤ 1, 0  ≤ x1  ≤  x2,. 

                                   f(t, x1)  ≤  f(t, x2)               

                and   g(t, x1) ≤ g(t, x2 ) . 

It is obvious that x
,

(t)   0  is a trivial solution of problem  (6) – (7)  for any values of  and  . 

 Theorem 3.1:   Assume (A1) – (A3). Suppose that the function u and v are respectively the lower and upper solutions of 

equation  (6). Further if  L  <  8,  then the equations  (6) – (7)  have minimal and maximal solutions in  [u, v]. 

 Proof: It is well known that the solution of problem  (6)  –  (7) is equivalent to the solution of integral equation  

              x(t)  =   ds ]))s(x,s(g   ))s(x,s(f [ )s,t(G

1

0

                      (10)   

where G(t, s) is the Green’s function of differential operator  - x    

 with respect to  boundary conditions   x(0) = 0  = x(1)  given by  

 

     t (1-s )            for 0   t    s 1   
             G (t, s)  =                       (11)     

          s (1-t)             for 0   s   t  1 

 

It is easy to show that  

        
1

0

),( ds stG   =  
2

)1( tt 
      

8

1
. 

Define  

 Ax (t)  =     dssxsf stG
1

0

))(,(),(     

and       Bx (t)  =     ds sxsg stG
1

0

))(,(),(  

For any x, y in  [u, v]; 
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          || Ax – Ay||  = 
 I t 

 sup


|Ax(t) – Ay(t)|,  

             
 I t 

 sup


   
1

0

|),( fstG (s ,x(s)) – f(s, y(s)) | ds 

      
 I t 

 sup


   L 
1

),(
o

stG | x(s) – y(s)| ds 

        
8

L
||x – y||    

     Since   L < 8, A becomes a contraction mapping on [u, v] and  so         (I - A)-1 exist. Hypothesis (A3) implies that    (I - A)-

1B  is increasing, (A2) implies that B is completely continuous and hence B is condensing. Applying the theory of differential 

inequality to (8) and (9) we see that   

  u (t)  

1

0

1

0

ds u(s))s)g(s,G(t, ds u(s))(s, f )sG(t, λ   

            

1

0

1

0

ds y(s))s)g(s,G(t,   )ds x(s)(s, f )sG(t, λ   

         =    Ax (t) + By (t) 

           

1

0

1

0

ds v(s))s)g(s,G(t, ds v(s)(s, f )sG(t,  λ    

                                   v (t) 
where x, y are in  [u, v]. Therefore A + B maps  [u, v] into itself. Theorem 2.4 asserts that A + B has minimal and maximal fixed 

points in [u, v]  which are desired solutions of equations   (6) –  (7). 
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