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ABSTRACT
Existence of extremal fixed points of A + B is obtained in ordered Banach spaces. Some applications to two- point boundary
value problems in ordinary differential equations are discussed.
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. INTRODUCTION
Krasnoselskii [2] proved the existence of fixed points of A + B in closed convex Banach spaces while many mathematician
had obtained its extremal fixed points in ordered Banach spaces. Here we generalize some results of [1.
Let X be a Banach space and K a cone in X. Let < be a partial ordering defined by K i.e. for x, yin X, x <y if y-x e K. A
cone K is said to be regular, if every increasing and bounded in order sequence has a limit and normal if there exists N > 0 such
that 0 < x <y implies || x||<N|y|. The details about cone and their properties may be found in [1].

Let Xo, Yo eX with Xo < g, the set  [Xo,Yo] = {XxeX:Xo < X< Yo}
is called order interval in X.
A mapping T: D < X — Xis said to be increasing if X, < X, implies
T X, <T X, . Tissaid to be a nonlinear contraction if there exist a lower semi continuous real function ¢ with ¢ (r)<r, r>
0 satisfying
I TX=Tyll < ¢ (lx=yll) ,forallx yinD. 1)
A mapping T is said to be condensing if y (T (S)) < vy (S) where S < D and 1y is Kuratowskii’s measure of noncompactness .
It is evident that if T is completely continuous then it is condensing.

FIXED POINT THEOREMS.
Theorem 2.1: Let Xo, Yo €X, Xo < Yo and A,B:[Xo,Yo] >X satisfy the following conditions:
(H1) Ais anonlinear contraction,
(Hz2) Ax+ By € [Xo, Yo] for X, y €[Xo,Yo]
(Hs) (1- A)'B is increasing where | denote an identity operator
(H4) B is semi continuous i.e. X, —X strongly
= Bx, —»Bx weakly.
Suppose that the cone K in the Banach space X is regular. Then the mapping A + B has maximal and minimal fixed
points in [Xo, Yol
Proof: Assume T =(l-A)'B, the existence of T is guaranteed by hypothesis (H,). Claim that T maps [Xo, Y] into itself. For
fixed y € [Xo, Yol define a mapping A, on [Xo,Yo] by
A, (x) = Ax + By @
where xe[Xo, Yo]. Hypothesis (H,) implies that A, maps [Xo, Yo] into itself moreover for X;, X, € [Xo,Yo]
1Ay () - Ay (<)l < (Ixaxel)
and hence A, isa nonlinear contraction. Therefore A, has a unique fixed point y' e [Xo, Yo] such that Ay (y)=Y". Now

for X € [Xo, Yol
TX=y = Ay+Bx=y =AY =Yy
But A, has unique fixed point in [Xo, Yo] and hence Tx € [Xo, Yo]. Therefore T maps [Xo,Yo] into itself.
Now consider the sequences {x,} and {y,} defined by
Xns1 = TXy and Yo = Ty, 3)
Hypothesis (Hs) implies that
X< x1<X < o XSS s <yi<yo 4)
Since K is regular and sequences {x,} and {y,} are bounded in order, these sequences converge to x* and y* respectively.
Hypothesis (H,) implies that T is semi continuous and so Tx*= x* and Ty*= y*. The fixed points of T are also fixed points of A
+ B. Therefore x* and y* are fixed points of A+B.
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If x is any fixed point of A + B then X, < x <y, Since T is increasing, X; < x <y and by induction x, <x < y, forn =
0,1,2,3...Taking the limits, we obtain x* < x < y*. Thus x* and y* are minimal and maximal fixed points of A + B. This
completes the proof.

Corollary 2.1: Let the conditions of Theorem 2.1 be satisfied. Suppose A + B has only one fixed point X in [Xo,Yo]. Then for
any Up € [Xo,Yo], the sequence
Un+1 = Aun+l+ Bun. (5)

convergesto X. i.e.||U,-x||— 0 (n— o0).

Proof: Define a mapping T on [Xo, Yo] as in Theorem 2.1. Then the sequence (5) can be obtained as the successive iterates
Un+1 = Tun-
Since Xo<up<ypand T isincreasing, X, < u, < y, By hypothesis, x is the only fixed point of T and hence x* = x = y*

where x*and y* are limits of sequences {Tx,} and {Ty,}. Cone K is regular implies that K is normal. So by normality of cone
and Theorem 2.1, it follows that  u, — x.

Theorem 2.2: Let the conditions (H,) and (H,) of Theorem 2.1 be satisfied. If B is completely continuous and K is normal then
A + B has a fixed point in [Xo, Yo].

Proof: Define a mapping T as in Theorem 2.1. Therefore T maps [Xo, Yol into itself. Since (I - A)™is continuous and B is
completely continuous, T is also completely continuous. Moreover K is normal and hence order interval [Xo, Yo] is closed convex
and bounded. Existence of fixed point of T is now guaranteed by Schauder’s theorem. Hence A + B has a fixed point.

Theorem 2.3: Assume conditions (H;) — (Hs) of theorem 2.1. If B is condensing and K is normal then A + B has a fixed point.
Proof: Define a mapping T as in Theorem 2.1. For fixed ug € [Xo, Yo] define a sequence {un} by Unsy = Tun.  Let S = {ug, Uy,
Uo.. }

S=T(S) U {u}
Since (I - A)™ is continuous and B is condensing, T is also condensing.
Hence y (S) = y(T (S)) <7 (S). Therefore y (S) = 0. This implies that S is relatively compact. Hence there exists a subsequence {

un Yof {u,} such that un — x*. But K is normal and so u, — x*. Taking limits n— oo in u, = TuUp4, We get x* = Tx* since T is
k k

continuous. Hence x* is a desired fixed point of A + B.

Theorem 2.4: Assume conditions (H;) - (H,) of Theorem 2.1. If B is condensing and K is normal then A + B has minimal and
maximal fixed points.

Proof: Define a mapping T as in the proof of Theorem 2.1. Then the sequences {X,} and {y,} defined by (3) converge
respectively to x* and y*. It is obvious that x* < y* and x* ,y* are fixed points of T. By similar procedure as expressed in
Theorem 2.1, it can be proved that x* and y* are minimal and maximal fixed points of A+B.

Corollary 2.2: Let the condition of Theorem 2.4 be satisfied. Suppose A + B has only one fixed point X € [X, Yo]. Then for
any Uo € [Xo, Yo] the sequence of iterates defined by (5) convergesto X. i.e. ||u,-x|[— 0 as (n— ).

The proof of this corollary is similar to that of corollary 2.1.
Remark-1: Consider the condition

(Hs) : Adis linear and Ak , for some k € N, is nonlinear contraction on [Xo, Yo].
If A, is defined by (2) then for any X e [Xo, Yo] using linearity of A, it follows that

Al§ (x) = Ak X + (I+A+A%+.. +A*Y) By.
Thus for Xg, X2 € [Xo, Yol
IAY () - A 0l < 6 (-

which shows that A5 is a nonlinear contraction and hence A, has a unique fixed point. This guarantees the existence of
mapping T as defined in the proof of Theorem 2.1. The definition of Ay and T shows that T maps  [Xo, Yo] into itself. Thus

Theorem 2.1 holds even if the condition (H;) isreplaced by (Hs).
Remark 2: Theorem 2.1.1 of [2] appears as a special case of Theorem 2.1, which may be obtained by putting A = 6.
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Remark 3: The condition (H3) had been imposed in the Theorem 3 of [3]. This condition can be excluded to obtain the result
of Theorem 3 of [3] as seen from Theorem 2.2. Our approach to prove the Theorem is quite simple and different from that of
[3].

Remark 4: Corollary 2.1.1 of [2] is a special case of Corollaries 2.1 and 2.2.

Remark 5: Theorem 2.2 holds even if the condition (H1) is replaced by (H5).

3. APPLICATIONS
Let X = C[I, R] be the set of continuous real valued function defined on I = [0, 1] with supremum norm and K ={xe X :x(t)

>0,0 <t < 1}. Then X is a Banach space and K is a cone in X. Moreover K is normal and regular. Consider the two-point
boundary value problem of ordinary differential equation
- X" = Af (X)) + gt x) (6)
x(0)=0=x(1) ()
where A, £z are parameters and f, g: | x X — X. The functions u and v, in C? [l, R] are said to be respectively lower and
upper solutions of (6) if
-u" )= A u )+ uog(t u) (®)
and
-V (< Af(Lu®)+ gt u() . ©)
We need the following assumptions:
(Ag) f(t, x) satisfies the Lipschitz condition in x with Lipschitz constant L i.e. there is a constant L > 0 such that
| f(t, x1) — f(t, X2) | < L | x3-Xz].
(A2) g(t, x) is continuous on 0 <t < 1.
(A3) f(t, x) and g(t, X) are increasing with respect to x i.e. for
Oft SI,O SXl S sz.
ft, x1) < f(t, x2)
and g(t, X)) <g(t, x2) .
Itis obviousthat x () = 0 isatrivial solution of problem (6) — (7) for any values of Aand .

Aop
Theorem 3.1:  Assume (A;) — (Asz). Suppose that the function u and v are respectively the lower and upper solutions of

equation (6). Further if AL < 8, then the equations (6) — (7) have minimal and maximal solutions in [u, v].
Proof: It is well known that the solution of problem (6) — (7) is equivalent to the solution of integral equation

X0 = [G(tS)[LF(5X(5) +ng(s x(s))]ds (10)

where G(t, s) is the Green’s function of differential operator - X"

with respect to boundary conditions x(0) =0 =x(1) given by
t(1-s) for0 <t <s<1
G(ts) = (11)
s (1-1) for0<s<t<1

It is easy to show that

jG(t,s)ds W=y 1
0 2 8

Define

Ax(t) = A jG(t,s) f (s, x(s))s

1
and  Bx() = u jG(t,s)g(s,x(s))ds
0

For any x, yin [u, v];
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| Ax — Ayl = sup |Ax(t) - Ay()l,
tel
<sup A jG(t S)| f (s .x(s)) — (s, y(s)) | ds

tel

< sup ALIG(t S) | x(s) - y(s)| ds
tel
AL

< ZZxe
3 [ =Vl

Since A L <8, A becomes a contraction mapping on [u, v] and so (1 - A" exist. Hypothesis (As) implies that (1 - A)°
B is increasing, (A,) implies that B is completely continuous and hence B is condensing. Applying the theory of differential
inequality to (8) and (9) we see that

xje(t,s)f (s,u(s))ds+ uj G(t, s)g(s,u(s))ds

IN

u (t)

IN

xje(t, s)f (s,X(s))ds +p J’ G(t, s)g(s y(s))ds
= AS( (t) + By (1) i
< j G(t, s)f (s,v(s)ds+p j G(t, s)g(s,v(s))ds

< ()
where x, yare in [u, v]. Therefore A + B maps [u, v] into itself. Theorem 2.4 asserts that A + B has minimal and maximal fixed
points in [u, v] which are desired solutions of equations (6) — (7).
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