
IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 915-922

ISSN: 2250-3021 www.iosrjen.org 915 | P a g e

Implementation of Fault Tolerant Architecture in Decentralized Intrusion

Detection System.

Surbhi Chauhan
1
,Kamal Kant

2
,Abhay Bansal

3
 and Arjun Singh

4

 1 Department of CSE, Amity University, Noida, INDIA,
2Department of CSE, Amity University, Noida, INDIA,
3Department of CSE, Amity University, Noida, INDIA,

 4 Department of CSE, Sir Padampat Singhania University, INDIA,

 ABSTRACT

The aim of this paper is to detect anomalous usage of legitimate applications by authorized users in Windows environment and to

implement a fault – tolerant architecture which can continue providing detection service even in case of failure of one or more

detecting servers. This paper also aims to implementing mobile agent technology for gathering the information from various

monitored hosts for a period of every 10 seconds. And to build per – application based profile for authorized users. This paper

implements the architecture that continues providing detection services even in case of busy state or failure of one more

detecting server.

[I]. INTRODUCTION

Most of research works in intrusion detection were

implemented in UNIX – based systems, where the data

source is just the user‟s command line. Such data has the
advantage of being read by user. Moreover, open –

sourced environment provides less complexity while

implementation. But in today‟s point and click

environment this type of data is increasingly rare. Jude

Shavlik and Mark Shavlik [9] made the first attempt and

proposed anomaly – based intrusion detection system

that created statistical profiles of the usage for a given

computer running on Windows 2000.The most

common shortcoming in typical IDS is that they were

built around a monolithic architecture, where data

gathering, processing and reporting were built as a single
entity at each host in the network. Later, in centralized

approach, the data processing and reporting components

alone were isolated and built as a single entity at a

dedicated detecting server. In existing hierarchical

architectures there were two or more detecting servers

dedicated for each segment in the network. In either of the

architectures, failure of a server leaves part of the network

unprotected.

Moreover, such architectures degrade the

performance of the detecting system when the

network scales. Earlier work on a fault – tolerant

architecture had the detecting component embedded on
static agents at each host and exchanged traces of

intrusions using mobile agents . A static agent on

receiving intrusion traces from its predecessor host,

would learn the intrusion patterns at other system.Previous

profiling methods targeted either the user or the

system profiling. In user profiling [5], [18], the detecting

system periodically or continuously monitored the

behavior of a user at various monitored hosts. Modeling

the activity would represent the user‟s normal

behavior. The model would provide a form of

authentication that would be very hard to impersonate. It

should come as no surprise that this turns out to be a

highly non trivial problem, because how to model
human behavior is far from obvious. Even more difficult is

to try and determine whether a legitimate user is doing

anything malicious. Whereas, in system profiling,

the detecting system continuously captured system

parameters of each monitored hosts and modeled the

normal behavior of those systems [9]. Model developed

represents the system normal behavior. But, gathering

system parameters continuously then performing

detection operation would bring down the performance of

various other processes in that host, and hence the

system. A related discipline is Program Profiling e.g. as in
[4], in which the normal behavior for an application

program is modeled, usually for the purpose of

detecting whether the program is doing anything it was

not designed to do. In this paper it was believed that

program profiling would somewhat be an easier problem

because unlike humans, programs come with

specifications and their behavior would therefore be very

limited by comparison.

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 915-922

ISSN: 2250-3021 www.iosrjen.org 916 | P a g e

[II]. OVERVIEW OF FAULT – TOLERANT

ANOMALY DETECTION SYSTEM

Figure 2.1: Overall architecture of Fault-tolerant

Anomaly Detection System.

This paper presents mobile agent based de –

centralized and fault – tolerant IDS to detect user

anomalies in Windows environment that address

some of the issues with the existing IDS models as

mentioned in the following sessions. The major components

of any intrusion detecting system are data gathering,

data processing and report generation. Jude and Mark

proposed the first IDS for Windows NT, adopted a

monolithic architecture [9]. In the architecture, all the

three components were considered as a single entity. In
this paper, the data processing and report

generation components were built together as a single

entity, Server Module. Several such entities were deployed

in more than one dedicated system across the

network and were called the detecting server or
detecting system. The data gathering component

deployed as mobile agent, travel from the detecting system

to perform specified task at each monitored host. The local

agents were deployed in every host in the network. The

core responsibility of this local (static) agent is only to

receive and execute the mobile agent locally.

[III] OUR WORK
The proposed Fault Tolerant Architecture is being
simulated in a network environment . The software for

each type of module was written in Sun Java JDK

Version1.5 on a Microsoft Windows environment.

The Simulation of the Fault Tolerant architecture involves

the following

 Information Source

 Analysis Engine

 Report Manager

The experiment was accomplished at an isolated

network with Five hosts and one Windows

server. The detecting and reporting modules together
were installed in three dedicated hosts (detecting servers)

Alpha, Beta and Gamma. The local agent was installed

in all the other hosts. The IP addresses of the detecting

servers were then updated to all local agents at every

monitored host. The local agents maintained

this information at a random order. When a user logged

in at any host, after the traditional authentication

procedures, the local agent at that host send request to the

detecting server whose IP address was at the first in its

list. The proposed system was deployed in the

network for five days and its services were tested
against activities of Two volunteers. After the initial

configurations, the first five sessions, from login to logout

of each user was considered as the training phase for that

user.

During the training phase, the user‟ activities at a host

was monitored periodically using mobile agents,

which were dispatched periodically from the detecting

server. Program profile was built to every user based on the

information collected during their first five login session.

This profile of every user carried the threshold values of

parameters which determine when an alarm should be
generated.

During the testing phase, the detecting servers have with

it the profile of every user who had then actively

logged in. The mobile agents periodically visited the

active hosts and reported the activities of users at various

hosts. The agent, for every 10 seconds, collected

information such as the : User name, Host IP

address, Time, Name of the applications that were then

currently running at that host, Number of

simultaneous but same applications, Time since the

applications were activated and Active time spent

on each application. The last four parameters
were instantaneously compared with the corresponding

Windows

Server

Host

– 1

Dedicated

host-1

Host

– 2

Dedicated

host-3

Host

– 3

Dedicated

host-2

Host

– 5

Host

– 4

Local

Agent

Local

Agent

Local

Agent

Local

Agent

Local

Agent

Server

Agent

Server

Module

Server

Module

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 915-922

ISSN: 2250-3021 www.iosrjen.org 917 | P a g e

thresholds at the profile of that user. If there

occurred any deviation, that is, if currently received values
exceed the threshold values then intrusion alert messages

were displayed at the detecting server The scope of

threshold was limited only for the next login session.

Latter, the thresholds were built using the history of

information collected during recent five sessions.

The „recent-past‟ collected information helped in ‘dynamic

profiling’.

Winnow-based algorithm is used to build

application based profile for each user, Program

profiling(subset of system profile). It is a machine

learning algorithm proposed by Jude and Mark to build

system profile. It was stated that the parameter of
each application was tested against the profile using

Winnow Based Algorithm . For each violation a

variable called WeightFor was incremented and

each normal activity a variable called WeightAgainst

was incremented. An alert message was to be

generated only if the value of WeightFor is greater than

WeightAgainst. And, after 10 seconds, these variables

would again set to zero. But while implementation, this

system did not use these variable. Because, if a user launch

an intrusion along with few normal behaviors then the

system fail to detect such anomalous. Hence, in this system,
even if one parameter exceeds the threshold once, then

alert messages were displayed. FADS (Fault Anomaly

Detection System) was also successful in supporting

the fault – tolerant architecture. The detecting server

Alpha, which was providing detection service to two

users, was purposefully switched down. The hosts

that were initially receiving services from server

Alpha, at random, sent request to servers Beta and

Gamma. The results of threshold violation and server

failure were discussed in next Section.

[IV] SAMPLES OF EXPERIMENTATION
For documentation purpose, behavior of one user

„04mit008‟ alone was recorded. The system

functionalities and results were discussed based on the

information collected while monitoring this user during

his various logins at various hosts in the network. The

figure 4.1 shows the initial status of the database with

two tables: „account‟ and „profile‟. The table

„account‟ maintains the login details of the users and the

„profile‟ maintains the thresholds for various users
during various login sessions. Once after the user

„04mit008‟ proves authenticity at machine:

192.168.1.10, the local agent at that system sends

request to the detecting server ALPHA. The detecting

system verified the user name in the „account‟ table.

Fig 4.1 : Initial Status of Database

Since the user logged in for the first time, a table was

created for that user and is shown in figure 4.2.

Fig 4.2: Table Created for New User

The Figure 4.3 shows a window at the detecting system

ALPHA alerting the administrator that a new user has

logged in for the first time from 192.168.1.10 with few

other details . The first few login sessions were
considered as training phase and hence no detection

will be done during these sessions. For experimental

purpose, First 5 sessions were considered as training

period and it was assumed that the user would use

only legitimate applications during these training

periods.

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 915-922

ISSN: 2250-3021 www.iosrjen.org 918 | P a g e

Figure 4.3: Alert message when a new user logged.

The figure 4.4 shows a window which displays each

time when an existing user logged in through of the

monitored hosts.

Figure 4.4: Alert message when an existing user logged.

The user activities collected during four different login

were recorded is shown in Figure 4.5. In this figure, the

column app_Name has the list of name of applications

that the user 04mit008 used during various logins. The

max_HND is a list of maximum number of similar

simultaneous applications used during that session. The

column cpu_TIME and elp_TIME are lists of active time
in seconds spent on each application during that session

and time in seconds since that application was opened.

The session_ID and hostname are the session

information.

Figure 4.5: Parameters gathered during end of session 5

The userName is the name of the user from whom the

per – application based profile is built. The appName

is the name of the application for which the threshold

was computed for the next session.

Figure 4.5 shows the information collected during the

first five sessions. The handle is a list of maximum

number of similar simultaneous applications used

during the recent past. The CPU and elp are lists of

average of active time in seconds spent on each application

during the recent past and average of time in seconds

since that application was opened. The figures 4.6 show the

user activities during his sixth login sessions and profile
built using the recent past information. That is, while

building the profile for sixth session the system

considered the information collected during the recent

five sessions .

Figure 4.6: Thresholds for session 6.

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 915-922

ISSN: 2250-3021 www.iosrjen.org 919 | P a g e

The table 4.7 shows an overview of various

activities which the proposed system considered as
anomalous behavior. It also explained why the

activity was considered as intrusion and the nature

of intrusion.

Table 4.7: Varieties of Anomalies considered.

TYPE OF

ANOMALY
EXPLANATION

NATURE OF

INTRUSION

Exceeding

Handle Count

Number of similar

simultaneous

application

Abnormal

behavior

Misusing

Resources

Exceeding

CPU Time

Effective time spent

on that application

Abnormal

behavior

Exceeding
Elapsed Time

An application was

invoked but was not
used

Misusing
Resources

Attempting to

use

New

Application

Application that was

not used during past

Abnormal

behavior

5. RESULTS AND DISCUSSIONS
 The proposed system also supported fault – tolerant

architecture, where hosts in one segment can receive

detection services from other detecting servers in same

or different segment. The Figures 5.1 and 5.2 were alert
messages to administrator at the detecting system

ALPHA during different sessions of the same user

from different host. The Figure 5.1 notifies that the

user „04mit008’ attempted to use more number of

MSWord applications than his usual behavior.

Figure 5.1: Alert message for Handle

violation

Figure 5.2: Alert message for CPU time violation

The Figure 5.2 was alert generated when the same user

tried working on iexplore more than profiled value. The

screenshot also carries with it the system ‟ IP address

from where the intrusion was launched and the date

and time of intrusion. The Figures 5.3 and 5.4 were alerts

generated during a particular session of the same user.

The figure 5.3 was an alert generated when the user

attempted to use Acrobat Reader for a longer period

than the profiled value.

Figure 5.3: Alert message for Elapsed time

violation

Approximately 6 minutes after the intrusion, the user

attempted to use Windows Media Player, which he had

not used earlier, shown in figure 5.4.

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 915-922

ISSN: 2250-3021 www.iosrjen.org 920 | P a g e

Figure 5.4: Alert message for attempting to use New

application

The figure 5.5 shows the initial configuration of the local

agent (192.168.1.10) with a list of IP addresses of

two detecting servers ALPHA (192.168.1.2) and

BETA (192.168.1.2). The local agent initially receives

detecting services from ALPHA.

Figure 5.5: Host configuration window

The figure 5.6 is message at the client when all the

detecting servers become inactive.

Figure 5.6: Servers failure message at Host

The figure 5.7 and 5.8 were alert message given to the

administrator, stating that a new user has logged in, with
respect to that server.

Figure 5.7: Request accepted at server ALPHA

The Figure 5.8 was observed when the local agent at

client 192.168.1.10 requested service to server BETA,

because of the failure of the server ALPHA.

Figure 5.8: Request accepted at server BETA

The table 5.9 is a summary of results observed during

different login sessions of different users in different host

at different time. The detection rate is defined as the

ratio of the number of intrusions detected to the number

of intrusions launched. The overall detection rate of the

system is: 95.83%

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 915-922

ISSN: 2250-3021 www.iosrjen.org 921 | P a g e

Table 5.9: Detection rate for various anomalies

Type of

intrusion

No. of

intrusion

detected

No. of

intrusion

launched

Detection

rate

Handle count

exceeded
42 45 93.33%

CPU time

exceeded
34 35 97.14%

Elapsed time

exceeded
24 25 96%

New

application
10 10 100%

CONCLUSIONS
In this “Modeling Intrusion Detection” a fault-tolerant

anomaly detecting system was proposed to identify
anomalous usage of legitimate applications by authorized

users in Windows environment. Mobile agents were

used to collect three application related parameters that

were then currently running in the kernel at various

hosts. The gathered information was periodically

reported to the detection server. A machine learning

approach called Winnow-based algorithm was used to

learn and built per – application based program profile

for each authorized user. Latter, irrespective to the host,

any application accessed by that users and its related

properties were periodically gathered. Such gathered

information was simultaneously compared with users‟
program profile. Any deviations were considered as

anomalous activities and were reported. From the

experimental evaluation, the information collected

during the recent five sessions, helped in „dynamic

profiling‟. Because of dynamic profiling the system was

able to tune itself with recent behaviors of users. The fault

– tolerant architecture, wherein a single point failure will

not leave the network unprotected, was successfully

implemented. And, a detection rate of 95.83% was

achieved.

REFERENCES
[1] Adriano M. Cansian, Artur R. A. da Silva and

Marcelo de Souza, “An Attack Signature

Model to Computer Security Intrusion

Detection”, IEEE, pp: 1368-1373, 2002.

[2] Balasubramaniyan. J, J. O. G.Fernandez, D. Isacoff,

E., H. Spafford, and D. Zamboni, “ An Architecture

for Intrusion Detection using Autonomous

Agents”, Technical report no. TR 98-05, Purdue

University, USA, 1998.

[3] Bernardes, M.C and dos Santos Moreira,

E., “Implementation of an intrusion detection

system based on mobile agents”, Proceedings of

the International Symposium on Software

Engineering for Parallel and Distributed Systems,

pp. 158-164 June 2000.

[4] Chan. P. C and Victor K. Wei, “Preemptive

Distributed Intrusion Detection using Mobile
Agents”, Proceedings of the Eleventh IEEE

International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises

(WETICE‟02), 2002.

[5] Debapriyay Mukhopadhyay and Satyajit

Banerjee, “User Profiling for Host Based

Anomaly Intrusion Detection in Windows

NT”, Emerging Applications Information

Technology, pp.193-196, 2006.

[6] Guy Helmer, Johnny S.K . Wong, Vasant

Honavar and Les Miller, “Automated discovery of

concise predictive rules for intrusion detection”,
The Journal of Systems and Software, vol. 60, pp:

165–175, 2002.

[7] Guy Helmer , Johnny S.K. Wong, Vasant Honavar,

Les Miller and Yanxin Wang, “Lightweight agents

for intrusion detection”, The Journal of Systems and

Software, vol. 67, pp: 109-122, 2003.

[8] Gorodetski. V, and Kotenko, “The Multi-agent

Systems for Computer Network Security

Assurance: Frameworks and Case Studies”,
Proceedings of the 2002 IEEE International

Conference on Artificial Intelligence Systems
(ICAIS‟02), 2002.

[9] Jude Shavlik and Mark Shavlik,

“Selection, Combination and Evaluation

of Effective Software Sensor for Detecting

Abnormal Computer Usage”, Proceedings of

the Tenth International Conference on Knowledge

Discovery and Data Mining, pp. 276-285, 2004.

[10] Kymie M. C. Tan and Roy A. Maxion, “

Determining the Operational Limits of an

Anomaly-Based Intrusion Detector”, IEEE

Journal on Selected Areas In

Communications, vol. 21, 2003
[11]. Ozgur Depren, Murat Topallar, Emin Anarim,

M. Kemal Ciliz, “An intelligent intrusion

detection system (IDS) for anomaly and

misuse detection in computer networks”, Expert

Systems with Applications, vol. 29, pp: 713–

722, 2005.

[12] Pradeep Kannadiga, M. Zulkernine, and S.

Ahamed, “Towards an Intrusion Detection

System for Pervasive Computing

Environments”, Proceedings of the

International Conference on Information
Technology (ITCC), Las Vegas, Nevada, USA, April

2005.

[13] Pradeep Kannadiga and Mohammad

Zulkernine, “DIDMA: A Distributed Intrusion

Detection System Using Mobile Agents”,
Proceedings of the Sixth International

Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed

Computing and First ACIS International

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 915-922

ISSN: 2250-3021 www.iosrjen.org 922 | P a g e

Workshop on Self-Assembling Wireless Networks,

2005.
[14] Peng Ning, Sushil Jajodia, Xiaoyang Sean

Wang, “Design and Implementation of a

decentralized prototype system for

detecting distributed attacks”, IEEE Transactions

on Computer Communications, vol. 25. pp: 1374-

1391, 2002.

[15] Jing Xu,Yongzhong Li “ A New Distributed

Intrusion Detection Model Based on immune Mobile

Agent Proceedings of IEEE ,2009

[16] Tao Peng , Christopher Leckie and

Kotagiri Ramamohanarao , “Information Sharing

for Distributed Intrusion Detection Systems”,
Journal of Network and Computer Applications,

2005.

[17] Mo Xiu-liang, Wang Chun-dong ,Wang Huai-

bin “ A Distributed Intrusion Detection

System Based on Mobile

Agents”Proceeding in IEEE ,2009

[18] Yoshinori Okazaki and Izuru Sato, “A New

Intrusion Detection Method based on Process

Profiling”, Proceedings of the IEEE Symposium

on Applications and the Internet, 2002.

[19] Liu Jianxiao 1, Li Lijuan 1 “Research of
Distributed Intrusion Detection System Model

Based on Mobile Agent” Proceedings of

IEEE International Forum on Information

Technology and Application,2009

[20] MO Xiu-liang, WANG Chun-dong , WANG

Huai-bin“A Distributed Intrusion Detection

System Based on Mobile Agents” Proceedings of

IEEE,2009

[21] Nita Patil, Chhaya Das, Shreya Patankar,Kshitija

Pol “Analysis of Distributed Intrusion Detection

Systems using Mobile Agents” Proceedings of

IEEE First International Conference on Emerging
Trends in Engineering and Technology ,2008

[22] Saidat Adebukola Onashoga , Adebayo D.

Akinde, Adesina Simon Sodiya “ A Strategic

Review of Existing Mobile Agent-Based

Intrusion Detection Systems” Proceeding of

Issues in Informing Science and Information

Technology Volume 6, 2009.

