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ABSTRACT: 
The modeling of electric power system on the state space with single, two and three area with integral and optimal control 

system known as Linear Quadratic Regulator(LQR) for designing the load frequency control system are realized in this paper. 

The fluctuations on voltage and frequency must be reduced to minimum level against load changes for obtaining high quality 

electric energy on electric power system. In this paper this is achieved by designing the integral controller and LQR .By using 

state-space analysis a state equation for three area load frequency is obtained. The proposed optimal LQR load frequency has 

been compared with integral control Simulink using MATLAB. 
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I. INTRODUCTION 
The main purpose of operating the load frequency control is to keep uniform the frequency changes during the load changes. 

During the power system operation rotor angle, frequency and active power are the main parameters to change [1]. In multi 

area system a change of power in one area is met by the increase in generation in all areas associated with a change in the tie-

line power and a reduction in frequency. In the normal operating state the power system demands of areas are satisfied at the 

nominal frequency. A simple control strategy for the normal mode is to operates in such a way that 

 
1. Keep frequency approximately at nominal value. 

2. Maintain the tie-line flow at about schedule. 

3. Each area should absorb its own load changes. 

 

Controller must be sensitive against changes in frequency and load. To analyze the control system, the mathematical model 

must be established. There are two models which are widely used [3],  

 

1. Transfer function model, 2.state variable approach.  

 

 In above methods the non-linearity of the system is to be converted in to Linearized system with suitable hypothesis and 

complete block diagram of the power system is established. 

 

II. MODELLING OF POWER SYSTEM 
II.1      SINGLE AREA SYSTEM ANALYSIS [2, 3]: 

Fig.1 gives the schematic diagram of load frequency control (p-f) of a turbo-generator. In this control method a frequency 

sensor senses the change in frequency and gives the signal ∆𝑓 . The p-f controller senses the change in frequency signal and 

the increments in tie-line real powers ∆𝑃𝑡𝑖𝑒 , which will indirectly provide information about incremental state error. These 

sensor signals are amplified, mixed and transformed into a real-power control signal∆𝑃𝑐 . The valve control mechanism takes 

∆𝑃𝑐   as the input signal and provides the output signal, which will change the position of the inlet valve of the prime mover. 

[2] 
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                  From the above Fig.1, the state space equation of single area is developed as under. 

   
𝑑

𝑑𝑡
 Δf  =

1

𝜏𝑝𝑠
 −∆𝑓 + 𝐾𝑝𝑠∆𝑃𝐺 − 𝐾𝑝𝑠∆𝑃𝐷                                                   (1)          

            

 
𝑑

𝑑𝑡
 ΔXE =

1

𝜏𝑠𝑔
 −∆𝑋𝐸 + ∆𝑃𝐶 − ∆𝑓 𝑅                                              (2)        

 
𝑑

𝑑𝑡
 ΔPG =

1

𝜏𝑡
 −∆𝑃𝐺 + ∆𝑋𝐸                                                                    (3) 

 

                  From above three equations the state space matrix is obtained as under. 

  

 
ΔXE

ΔPG

Δf

  =  

𝑋 1
𝑋 2
𝑋 3

 =

 
 
 
 
 −1 𝜏𝑠𝑔 0 −

1

𝑅𝜏𝑠𝑔
1

𝜏𝑡
−

1

𝜏𝑡
0

0
𝐾𝑝𝑠

𝜏𝑝𝑠
−

1

𝜏𝑝𝑠  
 
 
 
 

 

𝑥1

𝑥2

𝑥3

 +  
1 𝜏𝑠𝑔 

0
0

 𝑢 +  

0
0

−
𝐾𝑝𝑠

𝜏𝑝𝑠

 p 

 

                   In the above matrix u is system input and p is the disturbance. 

 

II. 2 TWO AREA SYSTEM ANALYSIS: 
 

                  Similarly to the single area modeling, the two area state space equation is developed. [2] 

    
𝑑

𝑑𝑡
 Δf1 =

1

𝜏𝑝𝑠 1
 −∆𝑓1 + 𝐾𝑝𝑠1∆𝑃𝐺1 − 𝐾𝑝𝑠1∆𝑃𝐷1 − 𝐾𝑝𝑠1∆𝑃𝑇𝐿                (4)  

 
𝑑

𝑑𝑡
 Δf2 =

1

𝜏𝑝𝑠 2
 −∆𝑓2 + 𝐾𝑝𝑠2∆𝑃𝐺2 − 𝐾𝑝𝑠2∆𝑃𝐷2 + 𝐾𝑝𝑠2∆𝑃𝑇𝐿1                             (5)  

 
𝑑

𝑑𝑡
 ΔXE1 =

1

𝜏𝑠𝑔1
 −∆𝑋𝐸1 + ∆𝑃𝐶1 − ∆𝑓1 𝑅1                                                          (6) 

 

   
𝑑

𝑑𝑡
 ΔXE2 =

1

𝜏𝑠𝑔2
 −∆𝑋𝐸2 + ∆𝑃𝐶2 − ∆𝑓2 𝑅2                             (7) 

 

    
𝑑

𝑑𝑡
 ΔPG1 =

1

𝜏𝑡1
 −∆𝑃𝐺1 + ∆𝑋𝐸1                                                                              (8) 

 
𝑑

𝑑𝑡
 ΔPG2 =

1

𝜏𝑡2
 −∆𝑃𝐺2 + ∆𝑋𝐸2                                                                             (9) 

 
𝑑

𝑑𝑡
 ΔPTL 1 = 2𝜋𝑇12

0  ∆𝑓1 − ∆𝑓2                                                                             (10) 

 

 
 
 
 
 
 
 
ΔXE1

ΔXE2

ΔPG1

ΔPG2

Δf1

Δf2

ΔPTL 1 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
𝑥1 
𝑥2 
𝑥3

𝑥4

𝑥5

𝑥6

𝑥7 
 
 
 
 

 
 
 
 
 
 
 

= 

 
 
 
 
 
 
 
 
 
 −

1

𝜏𝑝𝑠 1
0 0 0

𝐾𝑝𝑠 1

𝜏𝑝𝑠 1
0 −

𝐾𝑝𝑠 1

𝜏𝑝𝑠 1

0 −1 𝜏𝑝𝑠2 0 0 0
𝐾𝑝𝑠 2

𝜏𝑝𝑠 2
  
𝐾𝑝𝑠 2

𝜏𝑝𝑠 2

−
1

𝑅1𝜏𝑠𝑔1
0 −1 𝜏𝑠𝑔1 0 0 0 0

0 −1 𝑅2𝜏𝑠𝑔2 0 −1 𝜏𝑠𝑔2 0 0 0

0 0 1 𝜏𝑡1 0 −1 𝜏𝑡1 0 0

0 0 0 1 𝜏𝑡2 0 −1 𝜏𝑡2 0

2𝜋𝑇12
0 −2𝜋𝑇12

0 0 0 0 0 0  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7 
 
 
 
 
 
 

 + 
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0 0
0 0

1 𝜏𝑠𝑔1 0

0 1 𝜏𝑠𝑔2 

0 0
0 0
0 0  

 
 
 
 
 
 

 
𝑢1

𝑢2
 +  

 
 
 
 
 
 
 
 
 −

𝐾𝑝𝑠1

𝜏𝑝𝑠1

0

0 −𝐾𝑝𝑠2 𝜏𝑝𝑠2 

0 0
0 0
0 0
0 0
0 0  

 
 
 
 
 
 
 
 

 
𝑝1

𝑝2
  

 

II.3 THREE AREA SYSTEM ANALYSIS: 

 

                 Similarly to the two area modeling, the three area state space equation is developed as under [2]. 

 
𝑑

𝑑𝑡
 Δf1 =

1

𝜏𝑝𝑠 1
 −∆𝑓1 + 𝐾𝑝𝑠1∆𝑃𝐺1 − 𝐾𝑝𝑠1∆𝑃𝐷1 − 𝐾𝑝𝑠1∆𝑃𝑇𝐿1                          (11) 

 

  
𝑑

𝑑𝑡
 Δf2 =

1

𝜏𝑝𝑠 2
 −∆𝑓2 + 𝐾𝑝𝑠2∆𝑃𝐺2 − 𝐾𝑝𝑠2∆𝑃𝐷2 − 𝐾𝑝𝑠2∆𝑃𝑇𝐿2                             (12) 

 
𝑑

𝑑𝑡
 Δf3 =

1

𝜏𝑝𝑠 3
 −∆𝑓3 + 𝐾𝑝𝑠3∆𝑃𝐺3 − 𝐾𝑝𝑠3∆𝑃𝐷3 − 𝐾𝑝𝑠3∆𝑃𝑇𝐿3                             (13) 

 
𝑑

𝑑𝑡
 ΔXE1 =

1

𝜏𝑠𝑔1
 −∆𝑋𝐸1 + ∆𝑃𝐶1 − ∆𝑓1 𝑅1                                                          (14) 

 
𝑑

𝑑𝑡
 ΔXE2 =

1

𝜏𝑠𝑔2
 −∆𝑋𝐸2 + ∆𝑃𝐶2 − ∆𝑓2 𝑅2                                                          (15) 

𝑑

𝑑𝑡
 ΔXE3 =

1

𝜏𝑠𝑔3
 −∆𝑋𝐸3 + ∆𝑃𝐶3 − ∆𝑓3 𝑅3                                                         (16) 

 
𝑑

𝑑𝑡
 ΔPG1 =

1

𝜏𝑡1
 −∆𝑃𝐺1 + ∆𝑋𝐸1                                                                           (17) 

 
𝑑

𝑑𝑡
 ΔPG2 =

1

𝜏𝑡2
 −∆𝑃𝐺2 + ∆𝑋𝐸2                                                                           (18) 

 
𝑑

𝑑𝑡
 ΔPG3 =

1

𝜏𝑡3
 −∆𝑃𝐺3 + ∆𝑋𝐸3                                                                           (19) 

 
𝑑

𝑑𝑡
 ΔPTL 1 = 2𝜋𝑇12

0  ∆𝑓1 − ∆𝑓2 + 2𝜋𝑇13
0  ∆𝑓1 − ∆𝑓3                                            (20) 

 
𝑑

𝑑𝑡
 ΔPTL 2 = 2𝜋𝑇12

0  ∆𝑓1 − ∆𝑓2 − 2𝜋𝑇23
0  ∆𝑓2 − ∆𝑓3                                             (21) 

 
𝑑

𝑑𝑡
 ΔPTL 3 = 2𝜋𝑇13

0  ∆𝑓1 − ∆𝑓3 + 2𝜋𝑇23
0  ∆𝑓2 − ∆𝑓3                                             (22) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
ΔXE1

ΔXE2

ΔXE3

ΔPG1

ΔPG2

ΔPG3

Δf1

Δf2

Δf3

ΔPTL 1

ΔPTL 2

ΔPTL 3 
 
 
 
 
 
 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
 
 
 
 
 
 
𝑥1 
𝑥2 
𝑥3 
𝑥4 
𝑥5 
𝑥6 
𝑥7 
𝑥8

𝑥9

𝑥10

𝑥11

𝑥12 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

= 
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 −

1

𝜏𝑝𝑠1

0 0 0 0 0
𝐾𝑝𝑠1

𝜏𝑝𝑠1

0 0 −
𝐾𝑝𝑠1

𝜏𝑝𝑠1

0 0

0
−1

𝜏𝑝𝑠2

0 0 0 0 0
𝐾𝑝𝑠1

𝜏𝑝𝑠1

0 0 −
𝐾𝑝𝑠1

𝜏𝑝𝑠1

0

0 0
−1

𝜏𝑝𝑠2

0 0 0 0 0
𝐾𝑝𝑠1

𝜏𝑝𝑠1

0 0 −
𝐾𝑝𝑠1

𝜏𝑝𝑠1

−
1

𝑅1𝜏𝑔𝑠1

0 0
−1

𝜏𝑠𝑔1

0 0 0 0 0 0 0 0

0 −
1

𝑅2𝜏𝑔𝑠2

0 0
−1

𝜏𝑠𝑔1

0 0 0 0 0 0 0

0 0 −
1

𝑅2𝜏𝑔𝑠3

0 0
−1

𝜏𝑠𝑔3

0 0 0 0 0 0

0 0 0
1

𝜏𝑡1

0 0 −
1

𝜏𝑡1

0 0 0 0 0

0 0 0 0
1

𝜏𝑡2

0 0 −
1

𝜏𝑡2

0 0 0 0

0 0 0 0 0
1

𝜏𝑡3

0 0 −
1

𝜏𝑡3

0 0 0

2𝜋 𝑇12
0 + 𝑇13

0  −2𝜋𝑇12
0 −2𝜋𝑇13

0 0 0 0 0 0 0 0 0 0

2𝜋𝑇12
0 −2𝜋 𝑇12

0 + 𝑇23
0  2𝜋𝑇23

0 0 0 0 0 0 0 0 0 0

2𝜋𝑇13
0 2𝜋𝑇23

0 −2𝜋 𝑇13
0 + 𝑇23

0  0 0 0 0 0 0 0 0 0  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 𝐵 =

 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0
0 0 0
0 0 0

1 𝜏𝑠𝑔1 0 0

0 1 𝜏𝑠𝑔2 0

0 0 1 𝜏𝑠𝑔3 

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0  

 
 
 
 
 
 
 
 
 
 
 
 

                   𝐽 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −

𝐾𝑝𝑠 1

𝜏𝑝𝑠 1
0 0

0 −
𝐾𝑝𝑠 2

𝜏𝑝𝑠 2
0

0 0 −
𝐾𝑝𝑠 3

𝜏𝑝𝑠 3

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

III. INTEGRAL CONTROL [2] 
The integral control is composed of a frequency sensor and an integrator. The frequency sensor measures the frequency error 

∆f and this error signal is fed into the integrator. The input to the integrator is called the Area Control Error (ACE). The ACE 

is the change in area frequency, which when used in an integral-control loop, forces the steady-state frequency error to zero. 

Fig.2 shows the proportional plus integral control of LFC of a single-area system. 

 
Fig.2 PI control of LFC of a single- area system. 
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The integrator produces a real-power command signal ∆Pc and is given by 

 

∆Pc = -Ki ∆𝑓𝑑𝑡                                                                      (23) 

 

        = -Ki  𝐴𝐶𝐸 𝑑𝑡 

 

∆Pc = input of speed –changer 

Ki = integral gain constant. 

 

The value of Ki is given by below equation. [4] 

 

Ki = 1/4𝜏𝑝  𝐾𝑝𝑠  1 +
𝐾𝑝𝑠

𝑅
 

2

 = Kcrit 

 

The value of Ki is so selected that the response will be damped and non-oscillatory. In this case 

 

Ki< 𝐾𝑐𝑟𝑖𝑡 . 

 

In our analysis the Ki  is selected by above equation. It increases the system type by 1 which forces the final    frequency 

deviation to zero. 

 

IV. OPTIMAL CONTROL DESIGN FOR THE LOAD FREQUENCY CONTROL AGAINTST TO LOAD 

CHANGES. [1, 3, 5, 6] 
Optimal control is a branch of modern control theory that deals with designing controls for dynamic systems by minimizing a 

performance index that depends on the system variables.  

Consider the plant described by  

 

𝑋 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡  
 

The problem is to find the vector K (t) of the control law 

 

𝑢 𝑡 = −𝐾 𝑡 𝑥 𝑡  

 

This minimizes the value of a quadratic performance index J of the form  

𝐽 =   𝑥 ′𝑄𝑥 + 𝑢′𝑅𝑢 𝑑𝑡
𝑡𝑓

𝑡0

 

The constraint problem is solved by using an n-vector of Lagrange multipliers, 𝜆. The problem reduces to the minimization of 

the following unconstrained function. 

ʆ£ 𝑥, 𝜆, 𝑢, 𝑡 =   𝑥 ′𝑄𝑥 + 𝑢′𝑅𝑢 + 𝜆′ 𝐴𝑥 + 𝐵𝑢 − 𝑥                                             (24) 

 

The optimal values (denoted by subscript *) are found by equating the partial derivatives to zero. 
𝜕£ʆ

𝜕𝜆
= 𝐴𝑋∗ + 𝐵𝑢∗ − 𝑥 = 0       ⇒         𝑥 ∗ = 𝐴𝑋∗ + 𝐵𝑢∗ 

 
𝜕£ʆ

𝜕𝑢
= 2𝑅𝑢∗ + 𝜆′𝐵 = 0                   ⇒              𝑢∗ = −

1

2
𝑅−1𝜆′𝐵 

 
𝜕£ʆ

𝜕𝑥
= 2𝑥 ′∗𝑄 + 𝜆 ′ + 𝜆′𝐴 = 0           ⇒              𝜆 = −2𝑄𝑥∗ − 𝐴′𝜆 

 

Assume that there exists a symmetric, time varying positive definite matrix p(t) satisfying 

 

𝜆 = 2𝑝 𝑡 𝑥∗ 

 

Obtaining derivative of above equation 

𝜆 = 2(𝑝 𝑥∗ + 𝑝𝑥 ∗ ) 

 

Substituting values gives the optimal closed-loop control law 

 

𝑢∗ 𝑡 = −𝑅−1𝐵′𝑝 𝑡 𝑥∗ 
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Finally equating, we obtain 

 

𝑝  𝑡 = −𝑝 𝑡 𝐴 − 𝐴′𝑝 𝑡 − 𝑄 + 𝑝 𝑡 𝐵𝑅−1𝐵′𝑝(𝑡)                                             (25) 

 

For linear time-invariant systems, since𝑝 = 0, when the process is of infinite duration, that is𝑡𝑓 = ∞, equation reduces to the 

algebraic Riccati equation 

 

𝑝𝐴 + 𝐴′𝑝 + 𝑄 − 𝑝𝐵𝑅−1𝐵′𝑝 = 0 

 

In solution of the above equation, Riccati equation solution is used. From Riccati equation matrix optimal feed-back gaining 

and state response of the system at the beginning are solved. For the solution of Riccati equation, [k, p] = lqr (A, B, Q, R) 

function in Mat lab Control Toolbox is used. 

In ( The modeling of electric power system on the state space and controlling of optimal LQR load frequency), journal of 

electrical and electronics engineering 2009,volume 9, number 2 preferred Q and R parameters to design the optimal LQR.[7] 

Using the Riccati equations, K feed-back gaining matrix is selected. If the system response is not stable, the new Q and R 

weight matrices are determined. 

 

V. RESULTS 
By using MATLAB Simulink software following results are obtained for single area, two area and three area systems. All the 

three types of system are tested for different operating conditions which includes 1) without any change in the load, 2) with 

the change in load, 3) with ACE controller and 4) with LQR controller. For more than one system the performance is 

observed for the same systems or with different systems. 

 

V.1 SINGLE AREA SYSTEM: 

 

                      
                 
                         Fig.5.1.1. WITHOUT LOAD CHANGE                                           Fig.5.1.2. LOAD CHANGE 

 

 

                           
                         

                   Fig.5.1.3. WITH ACE CONTROLLER                                                             Fig5.1.4. WITH LQR CONTROLLER 
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V.2. TWO AREA SYSTEM:  

                           
            Fig.5.2.1TWO SAME SYSTEMS WITHOUT                                             Fig.5.2.2 TWO DIFFERENT SYSTEMS WITHOUT  

                              LOAD CHANGE                                                                                             LOAD CHANGE                                            

 

                     
                 

         Fig.5.2.3TWO SAME SYSTEMS WITH                                              Fig.5.2.4 TWO DIFFERENT SYSTEMS WITH 

LOAD CHANGE                                                                                            LOAD CHANGE 

 

                 
           

          Fig.5.2.5TWO SAME SYSTEMS WITH ACE                                             Fig.5.2.6TWO DIFFERENT SYSTEMS WITH ACE 

 

                    
 
            Fig.5.2.7 TWO SAME SYSTEMS WITH LQR                                       Fig5.2.8 TWO DIFFERENT SYSTEMS WITH LQR 
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V.3. THREE AREA SYSTEM: 

 

                          
 
                          Fig.5.3.1 THREE SAME SYSTEMS                                                                       Fig.5.3.2 THREE SAME SYSTEMS  

                                   WITHOUT LOAD CHANGE                                                                                 WITHOUT LOAD CHANGE 

 

                           
                   

                    Fig.5.3.3THREE SAME SYSTEMS                                                         Fig.5.3.4 THREE DIFFERENT SYSTEMS S 

                                   WITH LOAD CHANGE                                                                             WITH LOAD CHANGE      

              

                             
 

        Fig.5.3.5THREE SAME SYSTEMS WITH ACE                                     Fig.5.3.6THREE DIFFERENT SYSTEMS WITH ACE 

 

                            
     

       Fig.5.3.7 THREE SAME SYSTEMS  WITH LQR                                      Fig.5.3.8 THREE DIFFERENT SYSTEMS WITH LQR 
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VI. DISCUSSION 
From the above results the frequency deviation of all the areas is given in the below TABLE I. 

 

EFFECTS SINGLE AREA 
TWO AREA 

SAME SYSTEM 

TWO AREA 

DIFFERENT 

SYSTEM 

THREE AREA 

SAME SYSTEM 

THREE AREA 

DIFFERENT 

SYSTEM 

WITHOUT LOAD 

CHANGE 
-2.45 

( see Fig.5.1.1) 
-2.45 

( see Fig.5.2.1) 
-2.45 

( seeFig.5.2.2) 
-2.48 

( seeFig.5.3.1) 
-2.58 

( see Fig.5.3.2) 

LOAD CHANGE  -5.4 

( see Fig.5.1.2) 
-5.6 

( see Fig.5.2.3) 
-5.99 

( see Fig.5.2.4) 
-5.0. 

( see Fig.5.3.3) 
-5.79 

( see Fig.5.3.4) 

ACE 

CONTROLLER- 
-3.91 

(see  Fig.5.1.3) 
-3.94 

( see Fig.5.2.5) 
-4.49 

( see Fig.5.2.6) 
-3.93 

( see Fig.5.3.5) 
-4.23 

( see Fig.5.3.6) 

LQR 

CONTROLLER- 
-0.0265 

(see Fig 5.1.4) 
-0.0826 

( see Fig.5.2.7) 
-0.0896 

( see Fig.5.2.8) 

-0.0199 

( see fig.5.3.7) 

-0.0303 

( see Fig.5.3.8) 

 
It is seen from the above table that as the area is increased with the same system the frequency deviation is increased little bit. 

And for different system its deviation is again increased. The deviation is controlled by ACE controller up to minor value its 

affect on areas and system is taken. In case of LQR controller, as the load is changed the frequency according to the controller 

with load placement becomes stable in a short time. The load frequency is not affected much with the changes in the system 

parameter. Results are more satisfied in LQR controller.  
 

VII. CONCLUSION 
In this study the ACE controller and optimal LQR controller is implemented as supplementary controller in each area of a 

three are interconnected power system for the cases with and without load changes.  The positive effects of LQR controller is 

shown in all cases of different areas. Results of all the cases are compared. It shows the improved dynamic response of LQR 

controller compared to the conventional ACE controller. LQR design procedure is simpler and clearer than the traditional 

control design. With this high quality and performance controller, no modification is made in the controller structure against 

to changing parameters and loads. This demonstrates us that optimal LQR controller is more robust against changes that occur 

in the system than the other traditional controllers. 

 

 

APPENDIX 

 

PARAMETERS SYSTEM 1 SYSTEM 2 SYSTEM 3 

Power system gain constant ,  𝐾𝑝𝑠  105 120 100 

Power system time constant,  𝜏𝑝𝑠  22 20 22 

Speed Regulation R 2.5 2.5 3 

Normal frequency , f 50 50 50 

Governor time constant,  𝜏𝑠𝑔  0.3 0.2 0.3 

Turbine time constant,  𝜏𝑡  0.5 0.4 0.5 

Integration time , constant, Ki ,  

Ki = 1/4𝜏𝑝  𝐾𝑝𝑠  1 +
𝐾𝑝𝑠

𝑅
 

2
 = Kcrit                                                                            

 

0.15 0.1 0.15 

T12 = 0.08, T23 =0.08 and T13 = 0.07.  

ΔXE= Change in valve position. 

ΔPG = Change in generation. 
Δf = Change in frequency. 

ΔPTL = Change in tie − line power. 
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