
Shakti D Shekar, Prof. Dr. B B Meshram, Prof. Varshapriya, Pranit Patil, Pranav Ambavkar/

IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN : 2250-3021

Vol. 2 Issue 2, Feb.2012, pp. 293-299

www.iosrjen.org 293 | P a g e

DEBUGGING ON LINUX

Shakti D Shekar Prof. Dr. B B Meshram Prof. Varshapriya
VJTI, Mumbai VJTI, Mumbai VJTI, Mumbai

 Pranit Patil Pranav Ambavkar
VJTI, Mumbai VJTI, Mumbai

ABSTRACT
In programming sometimes some condition

which was assumed to be true is false during the

program execution or the value of the variable

which was assumed is not during program

execution. The result of this the output will not be

as expected. The errors like segmentation fault,

logical errors can be understood during program

execution only. Therefore debugging is very

important in programming. The debugging can

be done by printing out message or by using

debugging tools or by using manual checking of

the code line by line. There are various tools

available to test the program for debugging and

some of them are specific error debuggers. In this

paper we discuss various debugging tools

available for C programming on Linux platform.

These tools helps programmer to reduce time in

manual checking of program line by line.

Keywords- GDB, MEMWATCH, strace, valgrind.

I. INTRODUCTION
The debugging is process of finding and reducing

number of bugs in a program to make it behave as

expected. In the high level programming language

like Java have feature of exception handling that

makes debugging easier. But programming language

like C may cause silent problem such as memory

corruption and we cannot test program run time.

The debuggers are software tools which can debug

the program line by line or from specific line

number by setting break points or by changing

values in memory. In this paper we did literature

survey of four tools Valgrind, MEMWATCH, strace

and GDB. For each tool we have tested programs on

Ubuntu 11.10 machine having kernel 2.6.39.4. The

paper is organized as follows: section 2 deals with

Valgrind, section 3 deals with MEMWATCH,

section 4 deals with strace utility, and section 5 deals

with GDB. Finally we conclude in section 6.

II. Valgrind
The Valgrind[1][3] is for finding memory

management problems and threading bugs. It

includes memory error detector, two thread error

detectors, a cache and branch-prediction profiler, a

call graph generating cache and branch prediction

profiler, and a heap profiler. This is developed by

Julian Seward and ported to the Power architecture

by Paul Mackerras. Valgrind can be used to develop

new tool.

The memory leak is problem caused when program

reserves the memory but it does not release back to

the operating system. If the program continuously

reserving memory without releasing it then system

might turn into crash. As a developer sometimes it is

very difficult to find out manually to detect exact

cause of the error and line at which error could be if

code is in thousands of lines. In such case best

option is to test the program for debugging using

valgrind. Here is the program file test1.c (fig. 1)

where memory leakage is the problem.

 Fig 1: test1.c

Compile test1.c with –g option for debugging and

use valgrind with -v option to show output on

console. Fig. 2 shows last few lines from valgrind

output. In the output leak summary is given where

we understood problem with the program is memory

leakage. The valgrind detects invalid pointer use, use

of uninitialized variables too. The program code

test2.c (Fig. 3) is used for such errors. Fig. 4 shows

last few lines from the output of valgrind for such

buggy program.

#include<stdio.h>

#include<stdlib.h>

main()

{

 char *p1;

 p1=malloc(10);

 return 0;

}

Shakti D Shekar, Prof. Dr. B B Meshram, Prof. Varshapriya, Pranit Patil, Pranav Ambavkar/

IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN : 2250-3021

Vol. 2 Issue 2, Feb.2012, pp. 293-299

www.iosrjen.org 294 | P a g e

 Fig. 2 Valgrind output of test1.c

From output in the fig. 4 we understood that there

are 3 bugs. First (at line no. 15) conditional jump

depends on uninitialized value this is because of we

were trying to free unreserved memory. Second (at

line no. 12), invalid write of size 1, because we were

accessing p[2] which is invalid. Third (at line no. 7),

conditional jump depends on uninitialized value

because variable i hadn’t initialized and we were

accessing it. However valgrind does not check

bound checking on static arrays. That’s why it

haven’t shown an error at line no. 13 which is

a[5]=b.

 Fig. 3 test2.c

 Fig. 4 Valgrind output of test2.c

#include<stdio.h>

#include<stdlib.h>

main()

{

 int i;

 char *p, *q, a[5];

 if(i==0)

 {

 printf("unreachable");

 }

 p=malloc(2);

 p[2]='a';

 a[5]='b';

 free(p);

 free(q);

 return 0;

}

…

==2028== ERROR SUMMARY: 3 errors from 3

contexts (suppressed: 4 from 4)

==2028==

==2028== 1 errors in context 1 of 3:

==2028== Conditional jump or move depends on

uninitialised value(s)

==2028== at 0x4C28293: free

(vg_replace_malloc.c:366)

==2028== by 0x400657: main (test2.c:15)

==2028==

==2028==

==2028== 1 errors in context 2 of 3:

==2028== Invalid write of size 1

==2028== at 0x400639: main (test2.c:12)

==2028== Address 0x51ce042 is 0 bytes after a

block of size 2 alloc'd

==2028== at 0x4C28F9F: malloc

(vg_replace_malloc.c:236)

==2028== by 0x40062C: main (test2.c:11)

==2028==

==2028==

==2028== 1 errors in context 3 of 3:

==2028== Conditional jump or move depends on

uninitialised value(s)

==2028== at 0x40060F: main (test2.c:7)

==2028==

--2028--

--2028-- used_suppression: 4 dl-hack3-cond-1

==2028==

==2028== ERROR SUMMARY: 3 errors from 3

contexts (suppressed: 4 from 4)

sony@sony-VPCEB14EN:~/debug$ gcc -g test1.c

-o test1op

sony@sony-VPCEB14EN:~/debug$ valgrind -v

./test1op

…

==1935== Searching for pointers to 1 not-freed

blocks

==1935== Checked 77,912 bytes

==1935==

==1935== LEAK SUMMARY:

==1935== definitely lost: 10 bytes in 1 blocks

==1935== indirectly lost: 0 bytes in 0 blocks

==1935== possibly lost: 0 bytes in 0 blocks

==1935== still reachable: 0 bytes in 0 blocks

==1935== suppressed: 0 bytes in 0 blocks

==1935== Rerun with --leak-check=full to see

details of leaked memory

==1935==

==1935== ERROR SUMMARY: 0 errors from 0

contexts (suppressed: 4 from 4)

--1935--

--1935-- used_suppression: 4 dl-hack3-cond-1

==1935==

==1935== ERROR SUMMARY: 0 errors from 0

contexts (suppressed: 4 from 4)

Shakti D Shekar, Prof. Dr. B B Meshram, Prof. Varshapriya, Pranit Patil, Pranav Ambavkar/

IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN : 2250-3021

Vol. 2 Issue 2, Feb.2012, pp. 293-299

www.iosrjen.org 295 | P a g e

III. MEMWATCH

MEMWATCH [2] is a debugging tool for memory

error detection and leakage. It is written by Johan

Lindh. It can detect memory overflow, underflow,

unfreed memory, double frees errors. To use

MEMWATCH for memory errors detection add

header file to source code and compile. The

following program code test3.c (Fig. 5) which

includes memory leak, memory overflow, and

invalid pointer.

 Fig. 5 test3.c

Fig. 6 compiling test3.c using MEMWATCH

 Fig. 7 memwatch.log file

Compile the test3.c and execute the output file as

shown in Fig. 6. By observing memwatch.log file

we understood how MEMWATCH debugs the

program. Fig. 7 show last few lines of

memwatch.log file.

The memwatch.log file includes line number at

which error occurs and last few lines shows memory

usage statistics. The MEMWATCH differs from

other debugging tools, here we have debug the

program at compile time itself.

IV. strace
strace [4] is debugging utility to monitor the system

calls used by the program and all the signals it

receives. strace is useful when we do not have the

source code and would like to debug the execution

of a program. Each line in the strace output contains

system call name, followed by its arguments in

parentheses and its return value.

Following Fig. 8 shows output of strace for open

system call called during mounting usb drive.

 Fig. 8 strace output

#include "stdlib.h"

#include "stdio.h"

#include "memwatch.h"

main()

{

 char *p,*q,*s;

 p=malloc(10);

 q=malloc(10);

 q=p;

 q[10]='a';

 free(p);

 free(q);

 free(s);

}

sony@sony-

VPCEB14EN:~/Downloads/memwatch-2.71$

gcc -DMEMWATCH -DMW_STDIO test3.c

memwatch.c -o test3op

sony@sony-

VPCEB14EN:~/Downloads/memwatch-2.71$

./test3op

MEMWATCH detected 3 anomalies

NULL free: <5> test3.c(13), NULL pointer free'd

Stopped at Sat Feb 4 21:41:44 2012

unfreed: <2> test3.c(8), 10 bytes at 0x22cd390

 {FE FE FE FE FE FE FE FE FE FE

..}

Memory usage statistics (global):

 N)umber of allocations made: 2

 L)argest memory usage : 20

 T)otal of all alloc() calls: 20

 U)nfreed bytes totals : 10

root@sony-VPCEB14EN:/home/sony# strace -e

trace=open mount -t vfat /dev/sdb1 /mnt

open("/etc/ld.so.cache", O_RDONLY) = 3

open("/lib/x86_64-linux-gnu/libblkid.so.1",

O_RDONLY) = 3

open("/lib/x86_64-linux-gnu/libselinux.so.1",

O_RDONLY) = 3

open("/lib/x86_64-linux-gnu/libmount.so.1",

O_RDONLY) = 3

open("/lib/x86_64-linux-gnu/libc.so.6",

O_RDONLY) = 3

open("/lib/x86_64-linux-gnu/libuuid.so.1",

O_RDONLY) = 3

open("/lib/x86_64-linux-gnu/libdl.so.2",

O_RDONLY) = 3

open("/proc/filesystems", O_RDONLY) = 3

open("/usr/lib/locale/locale-archive",

O_RDONLY) = 3

open("/dev/null", O_RDWR) = 3

open("/etc/mtab", O_RDWR|O_CREAT, 0644) =

3

open("/etc/mtab~.3368",

O_WRONLY|O_CREAT, 0600) = 3

open("/etc/mtab~", O_WRONLY) = 3

open("/etc/mtab", O_RDONLY) = 4

open("/etc/mtab.AGAgLo",

O_RDWR|O_CREAT|O_EXCL, 0600) = 4

Shakti D Shekar, Prof. Dr. B B Meshram, Prof. Varshapriya, Pranit Patil, Pranav Ambavkar/

IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN : 2250-3021

Vol. 2 Issue 2, Feb.2012, pp. 293-299

www.iosrjen.org 296 | P a g e

The output in fig. 8 shows that during mounting usb

drive system called 15 open system call and each

returning positive value indicating success.

V. GBD
Along with memory bug, segmentation fault is also

major problem during programming. The output of

program does not match with requirements this is

due to logical mistake or value of variables are not

correct. To cope with this situation GDB [5][3] is the

debugging solution. GDB, the GNU project

debugger is an executable, is the standard debugger

for GNU software system. GDB allows us to see

what is going on inside another program while it

executes or what another program was doing at

moment of crash. What can GDB do for debugging?

1. It can start our program, specifying anything

that might affect its behavior.

2. It can stop our program on specified condition.

3. We can check what has happened, when our

program has stopped.

4. We can change value of variable or condition

and check how it could affects after changes.

GDB can run on most UNIX like operating system

and Microsoft Windows variants. GDB can debug C,

C++, Pascal, many other language programs.

There are many GDB commands, we can use help

command to display list of commands. Following is

the few lists of commands of GDB with short

description:

run- starts program execution from the beginning

 of the program.

continue- continue execution to next break point.

kill- kill program execution being debug.

quit- exit the GDB debugger.

step- step to next line of code.

next- execute next line of code and will not enter

 functions.

print- print value of variable or an expression.

break- set breakpoint at specified line or function.

delete- delete all break points or watchpoints.

Now to test the program using GDB consider

following program test4.c (Fig. 9). The output of

test4.c in Fig. 10 shows segmentation fault.

From output it is clear that after printf statement

segmentation fault came. So we apply gdb debugger

from line no. 3 that is from char ch declaration using

break command and use run command to execute the

program. See Fig. 11. After this we have printed

value of ch which should be a valid address. But

print command showed that 0x0 an invalid address

and we were passing this invalid address to printf

statement at line no 8. So line no. 3 creating a

segmentation fault. To remove this problem we did

modification at line no. 3 as char ch[2]=”y” in

source code. After this we compiled and test the

program using gdb again. Fig. 12 shows output after

run command of gdb.

 Fig. 9 test4.c

 Fig. 10 test4.c output

Fig. 11 gdb output for test4.c

 Fig. 12 gdb output after changes in test4.c

Now consider following program test5.c (Fig. 13(a)

13(b) and 13(c)) for catching logical errors using

gdb. Fig. 14 shows last few lines of output file

#include<stdio.h>

main()

{

 char *ch="y";

 while(!strcmp(ch,"y"))

 {

 printf("Enter character");

 scanf("%s" ,ch);

 }

}

sony@sony-VPCEB14EN:~/debug$ gcc -g

test4.c -o test4op

sony@sony-VPCEB14EN:~/debug$./test4op

Enter charactery

Segmentation fault

sony@sony-VPCEB14EN:~/debug$ gdb ./test4op

…

 (gdb) break 3

Breakpoint 1 at 0x40056c: file test4.c, line 3.

(gdb) run

Starting program: /home/sony/debug/test4op

Breakpoint 1, main () at test4.c:4

4 char *ch="y";

(gdb) print ch

$1 = 0x0

(gdb) quit

A debugging session is active.

Inferior 1 [process 2626] will be killed.

Quit anyway? (y or n) y

 (gdb) run

Starting program: /home/sony/debug/test4op

Enter charactery

Enter charactery

Enter charactery

Shakti D Shekar, Prof. Dr. B B Meshram, Prof. Varshapriya, Pranit Patil, Pranav Ambavkar/

IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN : 2250-3021

Vol. 2 Issue 2, Feb.2012, pp. 293-299

www.iosrjen.org 297 | P a g e

Fig 13(a) test5.c

test5op of test5.c. From this output it is clear that in

delete method somewhere went wrong. Thus we use

break command at line no.55 at which delete method

is defined and use run command for execution. This

is shown in Fig. 15.

 Fig. 13(b) test5.c

Once it reached line number 55 we have used s to

step it line by line. We have printed value of old

pointer which is pointer of type struct node. During

first iteration of while loop the value of data for old

pointer should be 1 and value of data for pointer p

should be 2, so that old should point to the node

previous of node to which p is pointing. But from

the output it is clear that both pointers are pointing to

same node having data equals to 2. This is logically

incorrect. This is due to improper assignments. By

simply observing(fig. 13(b)) pointer assignments

inside while loop of else part of delete method we

#include<stdio.h>

#include<stdlib.h>

struct node

{

 int data;

 struct node *next;

};

int add(int a,struct node **x)

{

 struct node *temp;

 struct node *current=*x;

 if(current==NULL)

 {

 temp=(struct node *)malloc(sizeof(struct

node));

 temp->data=a;

 temp->next=NULL;

 *x=temp;

 return 1;

 }

 else

 {

 if(current->next==NULL)

 {

 temp=(struct node *)malloc(sizeof(struct

node));

 temp->data=a;

 temp->next=NULL;

 current->next=temp;

 return 1;

 }

 else

 {

 while(current->next!=NULL)

 {

 current=current->next;

 }

 temp=(struct node *)malloc(sizeof(struct

node));

 temp->data=a;

 temp->next=NULL;

 current->next=temp;

 return 1;

 }

 }

}

void display(struct node *p)

 {

 printf("\nlink list:");

 while(p!=NULL)

 {

 printf("%d",p->data);

 p=p->next;

 if(p)

 printf("->");

 }

 }

void delete(struct node *p)

{

 int n;

 struct node *old;

 if(p->next==NULL)

 {

 n=p->data;

 free(p);

 printf("\nNode with data=%d deleted", n);

 }

 else

 {

 while(p->next!=NULL)

 {

 old=p->next;

 p=p->next;

 }

 old->next=NULL;

 n=p->data;

 free(p);

 printf("\nNode with data=%d deleted",n);

 }

}

Shakti D Shekar, Prof. Dr. B B Meshram, Prof. Varshapriya, Pranit Patil, Pranav Ambavkar/

IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN : 2250-3021

Vol. 2 Issue 2, Feb.2012, pp. 293-299

www.iosrjen.org 298 | P a g e

got that we did same assignments for both pointers

old and p which is logically incorrect.

 Fig. 13(c) test5.c

The line number 69 should be changed as old=p to

make correct assignment. Fig. 16 shows gdb output

of test5.c after proper changes. This time it run

properly and also last line showed that program

exited normally.

 Fig. 14 output of test5.c

 Fig. 15 gdb output of test5.c

 Fig. 15 gdb output of test5.c

sony@sony-VPCEB14EN:~/debug$ gcc -g test5.c

-o test5op

sony@sony-VPCEB14EN:~/debug$./test5op

6_64-linux-gnu/ld-2.13.so

7fbbc66e7000-7fbbc66e9000 rw-p 00021000 08:07

397305 /lib/x86_64-linux-gnu/ld-

2.13.so

7fff610cf000-7fff610f0000 rw-p 00000000 00:00 0

[stack]

7fff611ff000-7fff61200000 r-xp 00000000 00:00 0

[vdso]

ffffffffff600000-ffffffffff601000 r-xp 00000000

00:00 0 [vsyscall]

Node with data=3 deletedAborted

sony@sony-VPCEB14EN:~/debug$ gdb

./test5op

…

(gdb) break 55

Breakpoint 1 at 0x400836: file test5.c, line 55.

(gdb) run

Starting program: /home/sony/debug/test5op

enter the data1

Node with data=1 is added

Do you want to continue y/n:y

enter the data2

Node with data=2 is added

Do you want to continue y/n:y

enter the data3

Node with data=3 is added

Do you want to continue y/n:n

Breakpoint 1, delete (p=0x602010) at test5.c:59

59 if(p->next==NULL)

(gdb) s

67 while(p->next!=NULL)

(gdb) s

69 old=p->next;

(gdb) s

70 p=p->next;

(gdb) print *old

$1 = {data = 2, next = 0x602050}

main()

{

 struct node *p=NULL;

 int data,n,c=0;

 char ch[2]="y";

 while(!strcmp(ch,"y"))

 {

 printf("\nenter the data");

 scanf("%d",&data);

 n=add(data,&p);

 if(n==1)

 {

 printf("Node with data=%d is

added",data);

 c++;

 }

 else

 {

 printf("\nSome error during adding

data");

 return;

 }

 printf("\nDo you want to continue y/n:");

 scanf("%s",ch);

 }

 display(p);

 while(c)

 {

 delete(p);

 c--;

 sleep(1);

 }

 printf("\n");

 return 0;

}

Shakti D Shekar, Prof. Dr. B B Meshram, Prof. Varshapriya, Pranit Patil, Pranav Ambavkar/

IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN : 2250-3021

Vol. 2 Issue 2, Feb.2012, pp. 293-299

www.iosrjen.org 299 | P a g e

 Fig. 16 gdb output after changes in test5.c

VI. CONCLUSION
With the help of debugging tools programmer can

save much time to remove bugs and programmer can

directly reach to line at which there is an error. The

Valgrind and MEMWATCH are very useful for

memory management errors such as memory

leakage. The strace utility can be used when source

code is not available for debugging. By observing

system calls listed in strace output programmer can

detect cause of the bugs and attempt to capture race

conditions. Interactive tools like GDB are very

powerful for debugging purpose. GDB’s set of

commands helps programmer to perform debugging

during run time.

VII. REFERENCES
[1] http://valgrind.org/

[2]https://www.ibm.com/developerworks/linux/libra

ry/l-debug/

[3]http://www.ibm.com/developerworks/systems/libr

ary/es-debug/index.html#listing8

[4] www.linuxjournal.com/

[5] http://www.gnu.org/software/gdb/

sony@sony-VPCEB14EN:~/debug$ gcc -g

test5.c -o test5op

sony@sony-VPCEB14EN:~/debug$ gdb

./test5op

GNU gdb (Ubuntu/Linaro 7.3-0ubuntu2) 7.3-

2011.08

…

 (gdb) run

Starting program: /home/sony/debug/test5op

enter the data1

Node with data=1 is added

Do you want to continue y/n:y

enter the data2

Node with data=2 is added

Do you want to continue y/n:y

enter the data3

Node with data=3 is added

Do you want to continue y/n:n

link list:1->2->3

Node with data=3 deleted

Node with data=2 deleted

Node with data=1 deleted

[Inferior 1 (process 2899) exited normally]

(gdb)

