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Abstract : In this paper a sharp estimate of the maximum Ricci curvature function for a special contact 

slant submanifold M  in a Kenmotsu space form )(cM ,  in terms of the main extrinsic invariant namely 

the squared mean curvature has been obtained. If submanifold M  satisfies the equality case identically, 

then it is minimal.  
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I. INTRODUCTION 
The study of slant submanifold of an almost Hermitian manifold was started by B. Y. Chen ([1], [2]). 

Further Chen and Tazawa ([3], [4]), furnished examples of slant submanifolds of 
2C  and 

4C , while Maeda, 

Ohnita and Udagawa [5], studied slant submanifolds of Kaehler manifold. The notion of slant submanifold of 

almost contact metric manifold was introduced by A. Lotta [6]. A class of manifolds was studied and 

characterized by K. Kenmotsu [7], and the structure so obtained is nowadays known as Kenmotsu structure. In 

general a Kenmotsu structure is not Sasakian. A Kenmotsu space form is a Kenmotsu manifold with constant 

 -holomorphic sectional curvature c , denoted by )(cM . Recently, K. Arslan et. al . [8], have established a 

sharp relationship between the Ricci curvature and the squared mean curvature for submanifolds in Kenmotsu 

space forms. A (2m+1)-dimensional Riemannian manifold M is said to be an almost contact metric 

manifold if there exist structure tensors ),,.( g , where   is a (1, 1) tensor field,  a vector field,  a 1-

form and g the Riemannian metric on M  satisfying [9]: 
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for any TMYX ,  , where TM denotes the Lie algebra of vector fields on M . An almost contact metric 

manifold M  is called a Kenmotsu manifold if [7], 

 

(1.7) XYYXgYX  )(),()(        and     )(XXX   



On contact slant submanifolds in Kenmotsu space forms 

www.iosrjen.org                                                    42 | P a g e  

 

Where  denotes the Levi-Civita connection on M . 

The curvature tensor R of a Kenmotsu space form )(cM is given by [7],  
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for all TMZYX ,, . 

 Let M be an n-dimensional submanifold of a Kenmotsu space form )(cM of constant  -sectional 

curvature c .  We denote by )(K the sectional curvature of M associated with a plane section MTp⊂π , 

Mp , and  the Riemannian connection on M , respectively. We denote by h  the second fundamental 

form of   

M and by R and R the curvature tensors of the submanifold M  and Kenmotsu space form )(cM , 

respectively. Then the equation of Gauss is given by  
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 Let Mp and  1221 .,..,, meee  be an orthonormal basis of the tangent space MTp , such that 

neee .,..,, 21 are tangent to M at p . Let H denote the mean curvature vector, that is 
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For any vector field X tangent to M , we put FXPXX  , where PX and FX denote the tangential and 

normal components of X respectively. 

 

II. CONTACT SLANT SUBMANIFOLDS 
K. Arslan et. al. [8] have established a sharp relationship between the Ricci curvature and the squared 

mean curvature for submanifolds in Kenmotsu space forms. We recall the following theorem for our ready 

reference. 

Theorem [8]: Let )(cM  be a (2m+1)-dimensional Kenmotsu space form and M an n-dimensional 

submanifold tangent to  . Then 

(i) for each unit vector MTX p orthogonal to  , 
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(ii) A unit tangent vector X orthogonal to  at p satisfies the equality case of (2.1) if and only if 
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 A submanifold M tangent to  in a Kenmotsu space form )(cM is said to be contact slant 

submanifold if for any Mp and any MTX p linearly independent on , the angle between X and 

MTp is a constant , called the slant angle of M . A contact slant submanifold which is neither invariant nor 

anti-invariant is called a proper slant submanifold. 

A particular case of contact slant submanifolds, which we call special contact slant submanifolds ([10], [13]). A 

proper contact  -slant submanifold is said to be special contact slant if 

                                                          PXYPXYgYPX )(),()(    

Any 3-dimensional proper contact slant submanifold of a Kenmotsu manifold is a special contact slant 

submanifold [10]. 

We denote by R the maximum Ricci curvature function on M [11], defined by 

                                                         { } MpMTuuRicp p ∈∈= ,)(max)( 1
R  

where }1),(∈{1 == uugMTuMT pp . 

If 3=n , R is the Chen’s first invariant M introduced in [12]. For 3>n , R is the Chen’s invariant 

)1-(n . 

In this section, we establish an inequality for the Chen invariant  R  and show that any special contact slant 

submanifold which satisfies the equality case identically is minimal. 

Now we show 

 

Theorem (2.1): Let M be an (n+1)-dimensional special contact slant submanifold in a (2n+1)-dimensional 

Kenmotsu space form )(cM of constant  -sectional curvature c . Then for each unit vector X  orthogonal to 

 , we have 
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If M satisfies the equality case in (2.3) identically, then M is a minimal submanifold. 

 

Proof: The inequality (2.3) is an immediate consequence of the inequality (2.1). To ascertain minimality, we 

assume that M  is a special contact slant submanifold of Kenmotsu space form )(cM , which satisfies the 

equality case of (2.3) at a point Mp∈  . Now without loss of generality we may choose an orthonormal basis 

},...,,{ neee 10 ξ= of MTp such that )()( neRicp =R . Then by (2.2) it follows that 
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where  },...,,,...,,{ 2110 nnn eeeee += is the orthonormal basis with jjn Pee )(sec=+ , 

},...,2,1{ nj∈  and 1+ne parallel to the mean curvature vector )( pH . 
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Let A denote the Weingarten map of M in )(cM . Then it is easy to show that XAYA YX  =  for all vector 

fields YX ,  tangent to M (see [10]). Hence we have 
in

ji

jn

ji

kn

ji hhh +++ == ,,,
 for any },..,,{,, nkji 21∈ . 

Now using equations (2.4) a simple computation yields 0)( =pH , therefore M is a minimal submanifold. 

 We have the following characterization of n-dimensional special slant submanifolds in the sphere 
12 +nS  which satisfy the equality case of (2.3) identically. 

 

Theorem (2.2): Let M be an (n+1)-dimensional special contact slant submanifold of the (2n+1)-dimensional 

sphere 
12 +nS . Then M satisfies the equality case of (2.3) identically if and only if M is minimal and ruled.  

Proof:  The theorem (2.1) implies that M is a minimal submanifold. From the theorem [8], it is obvious that 

the equality case of (2.3) holds identically if and only if the relative null space 

                              }0{},0),({ ≠∈∀=∈= MTYYXhMTX pppN  

at any Mp∈  . 

Let lU denotes interior of the subset consisting of points in M such that the relative null space at p has 

dimension l . It follows that for some l , ≠lU , where }.,..,1{ nl ∈ . 

Let Ν∈YX , , and Z any vector field tangent to M . By applying Codazzi equation  

                                                        ),)((),)(( YXhZYh ZX ∇∇ = ,   

we get 0=∇ ),( ZYh X . Then N is integrable on  lU and each leaf  of  
lUN  is an l -dimensional totally 

geodesic submanifold of 
12 +nS . Thus submanifold M contains a geodesic of 

12 +nS through each point 

lUp∈ . 

Since M is the union of the closure of all lU , we conclude by continuity that M  contains a geodesic of the 

ambient space through each point in M . Hence, M is minimal and ruled. 

The converse follows from straightforward computation. 
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