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Abstract : In this paper a sharp estimate of the maximum Ricci curvature function for a special contact
slant submanifold M in a Kenmotsu space form M (C), in terms of the main extrinsic invariant namely

the squared mean curvature has been obtained. If submanifold M satisfies the equality case identically,
then it is minimal.
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l. INTRODUCTION
The study of slant submanifold of an almost Hermitian manifold was started by B. Y. Chen ([1], [2]).

Further Chen and Tazawa ([3], [4]), furnished examples of slant submanifolds of C? and C*, while Maeda,
Ohnita and Udagawa [5], studied slant submanifolds of Kaehler manifold. The notion of slant submanifold of
almost contact metric manifold was introduced by A. Lotta [6]. A class of manifolds was studied and
characterized by K. Kenmotsu [7], and the structure so obtained is nowadays known as Kenmotsu structure. In
general a Kenmotsu structure is not Sasakian. A Kenmotsu space form is a Kenmotsu manifold with constant

@ -holomorphic sectional curvature C, denoted by M (C) . Recently, K. Arslan et. al . [8], have established a
sharp relationship between the Ricci curvature and the squared mean curvature for submanifolds in Kenmotsu
space forms. A (2m+1)-dimensional Riemannian manifold M is said to be an almost contact metric
manifold if there exist structure tensors (¢.£,77,9), where ¢ is a (1, 1) tensor field, & a vector field, 77a 1-

form and g the Riemannian metric on M satisfying [9]:

11 @*X ==X +n(X)é

12) ¢E=0

13 n()=1

14  n(@X)=0

15  g(#X,gY)=a(X,Y)-n(X)n(Y)
16 n(X)=9(X,$)

forany X,Y € ™ , where TM denotes the Lie algebra of vector fields on M . An almost contact metric

manifold M is called a Kenmotsu manifold if [7],

@) (Vx @)Y =—g(X,)E—n(Y)gX and  Vx&E=X-n(X)E
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Where € denotes the Levi-Civita connection on M .

The curvature tensor R of a Kenmotsu space form M(C) is given by [7],
= c-3 c+1
18 R(XY)Z==={g(V,.2)X - g(X,2)Y j+==n(X)n@)Y
—n(Y)n(Z) X +n(Y)9(X,Z)¢ —n(X)g(Y,Z)S
—g(X,2) @Y +9(#Y,Z)gX +29(X, Y )42 }
forall X,Y,ZeTM .
Let M be an n-dimensional submanifold of a Kenmotsu space form M(C) of constant ¢ -sectional
curvature €. We denote by K () the sectional curvature of M associated with a plane section 71 T M ,

p €M, and V the Riemannian connection on M , respectively. We denote by h the second fundamental
form of

M and by Rand R the curvature tensors of the submanifold M and Kenmotsu space form M(C),
respectively. Then the equation of Gauss is given by

L9)  R(X,Y,Z,W)=R(X,Y,Z,W)+g(h(X,W) h(Y,Z)) - g(h(X,Z), h(Y,W))

forall X,Y,ZW cTM .
Let p€ M and {el,ez,...,e2m+l} be an orthonormal basis of the tangent spaceTpM , such that

€,6,,...,6,are tangent to Mat p. Let Hdenote the mean curvature vector, that is
l n
H(p)zﬁzh(ei,ei).Nowweset
i=1

(1.10) h';=g(he.e).e), i j=@L2..n} rein+D,. . 2Cm+1)}
For any vector field X tangentto M , we put@X = PX + FX, where PX and FX denote the tangential and
normal components of @X respectively.

1. CONTACT SLANT SUBMANIFOLDS
K. Arslan et. al. [8] have established a sharp relationship between the Ricci curvature and the squared
mean curvature for submanifolds in Kenmotsu space forms. We recall the following theorem for our ready
reference.

Theorem [8]: Let M(C) be a (2m+1)-dimensional Kenmotsu space form and M an n-dimensional
submanifold tangent to &. Then
(i) for each unit vector X € T, M orthogonal to &,

2 Ric(X)s%{(n—l)(c—s)+§(3||Px||2-z)<c+1)+n2||H||2}
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(ii) A unit tangent vector X orthogonal to & at p satisfies the equality case of (2.1) if and only if
h(X,Y)=0, VY eT M orthogonal to X

2.2

22 2h(X,X)=nH(p)

A submanifold M tangent to &in a Kenmotsu space form M(C) is said to be contact slant
submanifold if for any p € M and any X €T M linearly independent on&, the angle between ¢X and

T,M is a constant &, called the slant angle of M . A contact slant submanifold which is neither invariant nor

anti-invariant is called a proper slant submanifold.
A particular case of contact slant submanifolds, which we call special contact slant submanifolds ([10], [13]). A

proper contact & -slant submanifold is said to be special contact slant if

(VxP)Y =g(Y,PX) & —n(Y)PX
Any 3-dimensional proper contact slant submanifold of a Kenmotsu manifold is a special contact slant
submanifold [10].

We denote by R the maximum Ricci curvature function on M [11], defined by
—_ H 1
R(p)—max{Rlc(u) | ue TpM} pe M
Ing — _
where T:M ={u €T M | g(u,u) =1}.
If Nn=3, Ris the Chen’s first invariant O, introduced in [12]. For N >3, Ris the Chen’s invariant
o(n-1).

In this section, we establish an inequality for the Chen invariant R and show that any special contact slant
submanifold which satisfies the equality case identically is minimal.
Now we show

Theorem (2.1): Let M be an (n+1)-dimensional special contact slant submanifold in a (2n+1)-dimensional
Kenmotsu space form M (C) of constant ¢ -sectional curvature C . Then for each unit vector X orthogonal to
&, we have

1 2 2 1 2
(2.3) R=2{(n+1) [HI +n(c-3) +5(8cosB-2)(c+1)}
If M satisfies the equality case in (2.3) identically, then M is a minimal submanifold.
Proof: The inequality (2.3) is an immediate consequence of the inequality (2.1). To ascertain minimality, we

assume that M is a special contact slant submanifold of Kenmotsu space form M(C) , Which satisfies the
equality case of (2.3) ata point pE€ M . Now without loss of generality we may choose an orthonormal basis

e, =&,e,,...,e,} of T,M such that R(p) =Ric(e, ). Then by (2.2) it follows that
n-1

(2.4) h(e;.e,)=0, Vi€ {0,..,n-1; h(e,.e)=>h(e, e)
i=1

where {€, =&,€,,...,€,,€,41,---, €, }is the orthonormal basis with sj = (sech) Pe;,
J€ {1,2,...,n} and e,,,parallel to the mean curvature vector H(p) .
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Let Adenote the Weingarten map of M in M(C) . Then it is easy to show that A,, Y = A, X for all vector
fields X,Y tangentto M (see [10]). Hence we have hi"”jrk = hi'j}'j = hi'T forany i, j,k €{1,2,..,n}.

Now using equations (2.4) a simple computation yields H(p) = O, therefore M is a minimal submanifold.

We have the following characterization of n-dimensional special slant submanifolds in the sphere

S which satisfy the equality case of (2.3) identically.

Theorem (2.2): Let M be an (n+1)-dimensional special contact slant submanifold of the (2n+1)-dimensional

sphere S 2™ Then M satisfies the equality case of (2.3) identically if and only if M is minimal and ruled.

Proof: The theorem (2.1) implies that M is a minimal submanifold. From the theorem [8], it is obvious that
the equality case of (2.3) holds identically if and only if the relative null space

N, ={X€e T,M |h(X,Y)=0,V Y€ T ,M}#{0}
atany pe M .
Let U, denotes interior of the subset consisting of points in M such that the relative null space at p has
dimension | . It follows that for some |, U, # ¢, where | € {L,...,n}.

Let X,Y € NV, and Z any vector field tangent to M . By applying Codazzi equation
(Y h)(Y,Z) = (L h)(X,Y),

we get h(V Y, Z)=0.Then Nisintegrable on U, and each leaf of N | U, isan | -dimensional totally

S 2n+l S 2n+l

geodesic submanifold of . Thus submanifold M contains a geodesic of through each point

pe U,.
Since M is the union of the closure of all U, we conclude by continuity that M contains a geodesic of the

ambient space through each pointin M . Hence, M is minimal and ruled.
The converse follows from straightforward computation.
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