
IOSR Journal of Engineering 

e-ISSN: 2250-3021, p-ISSN: 2278-8719, 

Vol. 2, Issue 12 (Dec. 2012), ||V1|| PP 01-15 

www.iosrjen.org                                                    1 | P a g e  

Control of Binary Input Systems  

William HOLDERBAUM 
School of Systems Engineering, the University of Reading, Reading, RG66AY, UK 

 

 

Abstract:––Nowadays many systems are controlled by items of commutation, mainly in powers electronics 

and hydraulic. This Boolean input systems has increased  in the electric industry. Power supply include 

such system and there are represented by power converter. The goal of  this paper is to propose a 

methodology to design a control law to apply on systems with Boolean inputs. Firstly, we study the 

problem of  regulation around a desired state trajectory. Afterwards, the algorithm is applied to a 

predefined trajectory from initial state. Also this method  is used for the tracking of a real time trajectory. 

Finally, these results are implemented to an electronic circuit. 
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I. INTRODUCTION 
Several methods dealing with Boolean control have been developed during the last years. These 

strategies of Boolean control are generally applied in order to improve the behavior of switching systems. These 

switching systems are frequently used in industrial applications because they give a high power in output as for 

example power converters. The power converter is a part of Boolean input systems. The behavior of such 

systems is controlled by the switching ON (value 1) and OFF (value 0) of components as thyristors or transistors. 

These Boolean control methods are separated in three classes. The first class of methods consists to control the 

process using mean values of inputs, like in the well known P.W.M (Pulse Width Modulation) technique (1)(2). 

The regulation is often realized by a P.I.D controller of which performance is good. But this controller doesn't 

straight take effect on the commutation. The second class of control design consists in keeping the binary values 

of the inputs, and in using different approaches like Sliding Mode Control(SMC) (3)(4),input-output decoupling 

(5). This technique is characterized by discontinuous control action on Variable Structure System(VSS) which 

changes structure upon reaching a set of switching surfaces. The switching instants are determined by 

appropriate sliding surface (switching surface). Sliding surface are chosen to achieve a desired dynamical 

response.  

Sliding Mode Control for multi-input systems is used to control electronics converter. The main 

drawback of a Sliding Mode Control system have that it is very difficult to choose sliding surface in Multi Input 

Multi Ouput (MIMO). 

The last class concern the direct self control (DSC) which is a recently introduced control methodology 

(6)(7). This method is generally applied to electrical system composed of an induction motor and its power 

converter (8). The basic principle of DSC is in fact to control torque and stator flux amplitude by selecting 

suitable switching states on the basis of the stator flux position. But this procedure is too exclusive, because it is 

used for motor control. 

A new Boolean control system is introduced in this paper. This technique uses directly the Boolean 

values to control the system in order to take account the whole model, and to act on  commutations. 

The paper is outlined as follows. The section II describes the model used. In section III we define a new control 

criterion for systems with binary inputs. Then we will apply this criterion for the regulation around a predefined 

trajectory, and afterward to follow a real time  trajectory. We illustrate the proposed method by application to a 

particular example.  

 

II. PRESENTATION 
Consider the system modeled by the state equation : 

    ,x f x u    (1) 

where  x x xn

T
n 1  is the state vector and    u u um

T m
 1 01 ,  is the input vector  

composed of Boolean variables.  
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The input vector u  can take any configuration (9) among 2m
 different vectors  Config ui  containing 

Boolean values as : 

  Config u ii
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Between two commutations of the system, the input u is a constant vector denoted  Config ui . For example if 

the number input m 2  then the  Config ui set becomes :  

  Config u ii /  
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III. BOOLEAN CONTROL 

The aim of the study is to determine the sequence of  Config u
i

 for vector u  for the state vector x  

to reach a desired fixed state (10), denoted by  x d . 

Let us consider a vector   which  represents a position error vector associated with : 

       x xd p  (2) 

 where   x p is the current position of the model in the hyperplane associated with the state space and  x d  is 

the target. We calculate the vector 

Vi  associated with  x i  such as   


V xi i

def

 , for each configuration 

 Config u
i

 associated with the current position  x p  
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 (3) 

Our aim is to determine the configuration  Config u
i

 minimizing the angle   between   and 

Vi . We can 

illustrate this procedure with the example shown figure 1, where x 2
and  u 01,

2
. 

 

0


V4

V
1

x1



x2

x1

 x p


V2




V3  x d

 
Fig.1 : Control in the state space 

In that case, the vector 

V3  has the smallest angle with the vector  . 


V3  corresponds to the control 

 Config u3 









1

0
 applied to the model.  

 Interpretation : If the target  x d  is fixed and constant, then  x i  can be defined by the equation (eq. 

4) in relation to the derivative of   (eq. 2) when the configuration ui  is applied. 
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  x
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 (4) 

We calculate the inner product between   and 

Vi  (  


V xi i

def

 ) by using :  

    , . .cos
 
V Vi i  (5) 
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The cosine of the angle is given by :  cos
.
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 (9) 

The configuration  Config u
i

 is chosen by minimizing angle  . The minimization of angle   is deduced by 

the cosine maximum : 
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which can be written as : 
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 (11) 

So the control criterion is expressed by equation 11. By now we can show that the produce error due to this 

developed strategy control is bounded. 

Proof : The operation principle is such that the deviation with respect to the next point, is less than smallest of 

two following terms : the initial deviation and the maximum allowable variations. 

 The proof is explained with the figure 2. 
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 Fig.2 : Control in the state space 

 

 In fact the deviation with respect to the next point is stated by  3 , consequently this deviation is less 

than smallest of these two terms : the initial deviation   and the maximum allowable variations. This maximum 
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allowable variations is calculated for each configuration i   where i m 1 2, and represented by a set of 


Vi

 which obviously depend of the sampling time. That's why we can say that the error due to the strategy 

control is bounded. 

 

IV. TRACKING PREDEFINED TRAJECTORY 
Our main objective here is to allow the system to track a desired trajectory. The desired trajectory is 

predefined (10) in the state space (figure 3), and it is defined between a starting point M1 to an end point ME.  

 
Fig.3 : Predefined trajectory in the state space 

 

This trajectory is not supposed to be defined in real time, and consequently this definition form will be 

settled in order to respect specification sheets. In general case the equation form trajectory is unknown that's why 

it is necessary to discrete. So the defined continuous trajectory is changed into file data points. Hence we use the 

parametric equation to obtain the expected state trajectory, and which can be represented by a set of point 

        M x k x kk d d
 1 2, . This description is interpreted as follows :  
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where    x kj
d

 ( j n 1, ) represents the k
th

 discrete point define on the state variable trajectory by the 

parameter  k E N 1, . The sampling period is chosen according to the dynamic system. The whole points 

number E depends from sampling period. 

In order to minimize the number of switching, we define a domain of dimensional n all around this 

parameter curve whose boundary will be denoted the enveloping curve of the desired trajectory. This region 

contains the evolution trajectory of the system. We calculate the control u in closed-loop at each instant of 

intersection of the state trajectory with the enveloping curve of the desired trajectory (figure 3).  

 

Methodology 

 The aim of this procedure is to minimize the commutation, and to control system in a bandwidth. For 

that we have to determine when the current position (x)p is inside or outside of the boundary domain previously 

defined by enveloping curve. The location of the current position (x)p is necessary to know when a new Boolean 

control has to be computed. A new configuration  Config u
i

 is calculated when the current position (x)p is 

outside so that the system converges inside the bandwidth. More precisely the idea is to select the velocity 

vectors which cross the envelope just when the current position (x)p  goes outside it. So we choose between them 

the smallest angle with the vector  . 
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Conversely if the current position (x)p is inside any control is computed, but the same control previously 

defined (when the current position (x)p goes outside the boundary domain) has to be applied. This last 

consideration has for objective to minimize the commutation frequency since the same control is kept in the 

bandwidth. 

The method is summarized here, and presented in several steps in the next section. As to explain to the 

beginning of methodology we have to know at all moment the position (x)p, in comparison of the discrete desired 

trajectory. To realize that, the minimal distance is computed with the discrete state trajectory with respect to 

whole points in the first step, but the major drawback is the compute time is too long. To overcome this problem, 

an observation window is defined around the predefined state trajectory, and by now the minimal distance have 

to be computed by this observation window. If the minimal distance corresponds to window 's boundary then the 

window is moved until the minimal distance does not belong to the limit of the window. So the compute time can 

be reduced. With the computed minimal distance, a vector orthogonal can be formed, this allows to discern 

which vectors cross the domain previously defined by using the inner product. Hence we can choose the 

configuration between them and the vector   by the method previously exposed in section III. 

1  In the first step : Initialization : 

  To initialize we search for the Mk on the discrete state trajectory with a minimal distance from  x p . The 

distance in n
 is calculated by using : 

              d x k x x k x
k to E d p n d n pmin min
1

1 1

2 2

  
- + + -   (13) 

kdmin
: it is the parameter on this curve that corresponds to the minimal distance. 

 The consideration where kdmin
 is not unique has to be taken account here. That means there are several 

minimal distance dmin due to geometrical form of the desired trajectory. In that case, the choice is performed by 

taking the nearest value parameter kdmin
 with the whole number parameter E. This selection is realized in order 

to reach an end point ME by the predefined trajectory as rapidly as possible, that’s why this procedure of choice 

has been defined. 

 An observation window is defined (figure 4), called win around this discrete state trajectory. The size of win 

is defined by five points. The point M kdmin

which has been found corresponding to kdmin
 is used to form this 

window 's boundary as follows :  
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Fig.4 : Observation window around state trajectory in state space 
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For the following sampling time we go to the second step. 

 

2  In the next iteration we repeat the calculation of the minimal distance between the current position and the 

observation window. This minimal distance calculated on the observation window allow to reduce the compute 

time, because the calculation is only performed on five points and not whole points on this discrete desired state 

trajectory. 

          d x k x x k x
k d p n d n p

win

min min 1 1

2 2

( ) - + + ( ) -  (14) 

       with k kwin win min  to k winmax  

 x d  represents the target such that    x kd  is the set of states which belongs to the window. 

      x k x wind d   

 If the new computed point 
mindkM  (resp. dmin  with this minimal distance) corresponds to the window's 

boundary ( k kd winmin min  or k winmax ); then the window on this curve is moved  with respect to previous value 

of k winmin  and k winmax  :  

k k

k k

win win
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max max
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This step by using distance minimal (equ. 14)  and shifting window is repeated until the position 

kdmin
(resp. dmin ) on parametrized curve does not belong anymore to the window limits. 

( )x p
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x1

dmin
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M k winmax

M kdmin

M kdmin
New

 
Fig.5 : Observation window moving around desired trajectory in state space 

    

In this example (figure 5) dmin corresponds to the point 
winkM

m ax
 belonging to window's boundary, then 

the window is moved as previously defined. 

 If the new computed point M kdmin

 (resp. dmin  with this minimal distance) does not correspond to the 

window's boundary; then the new boundary limits ( k winmin  and k winmax ) of the observation window are defined 

and the algorithm can be go on to the third step. 

The new definition of the observation window which is occurred in this stage, is expressed by taking M kdmin

 as 

the center of the window  as follows :   

-center of window  M kdmin

  

-lower bound of the window 
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3  The width between desired state trajectory and the envelope is defined by the distance dc. In other words dc 

represents the envelop around the desired state trajectory. The value of dc is chosen by the user such that 

efficiently about the reduction of switching frequency and accuracy in order to follow desired state trajectory 

nearest possible have to be respected. 

 The calculated distance dmin is compared with this distance dc. 

-If d dcmin    thus we are inside the bandwidth and hence we apply the same control as for the previous sampling 

time. Then we return to the second step at the next sampling time. 

-If d dcmin   then we go to the forth step. 

 

4  The vector 

Vorth  is formed, defined below, using the minimal distance 

  
minorthV

dkp Mx 


 (15) 

 By using the inner product between 

Vorth  and  


Vi , the vectors which cross the envelope are determined.  

( )x p

x2

x1
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M k winmin

M k winmax

M kdmin

dc


V1


V2


V4


V3


Vorth

 
Fig.6 : Selection vectors which cross the envelope in state space 

  

For this example (figure 6), the vector 

V3  and 


V4  which cross the tube will be selected to go in the fifth step. 

 

5  The configuration ui  of input vector u is chosen among the remaining vectors which cross the envelope 

and we select the best vector by the method described in § 3 (Boolean Control).  

The algorithm is restarted after the new sampling time in the second step. Repeating the above process we 

converge to the regulation domain. 

This procedure is illustrated by the following scheme (figure 7): 

( )x p

x2

x1


V4


V3

ME3 4



dmin

M k winmin M kdmin

M k winmax

 
Fig.7 : Tracking in state space 

 

Here vectors 

V3  and 


V4  cross the tube. The vector 


V4  has the smallest angle4  in comparison of 3  with 

the vector  . Therefore the vector 

V4  is chosen for the control in order to converge to the regulation region. 

The center of  this regulation region is represented by the end point ME as described in the next section. 
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Regulation problem 

A domain Dr  is defined around of the end point ME (cf. figure 8). The goal of this domain is to 

minimize the commutation as previously described method.  


v3


v4


v2


v1



( )x p

ME

Regulation region

x1

x2

3

 
Fig.8 : Regulation in state space 

If  x Dp r  then the determination of the sequence u  is made by using the method presented in § 3 (Boolean 

Control). For example in figure 8 the vector 

V3  will be applied for the control. 

If  x Dp r  then the same previous computed control, corresponding to  x p  when it was outside of the 

domain Dr is applied. 

 

Application 

This method is applied on a power electronic circuit illustrated in figure 9 modeled by a second order 

composed of inductor L1 and capacitor C1, resistances and switching components. This electronic circuit is 

supplied by two continuous voltages E1 and E2. The aim is to control the magnetic flux L1  in  the inductor and  

the electrical charge qC1  in the capacitor in order to get a desired magnetic flux and electrical charge. 

E1 E2

S2S1 R3

R1

R2 L1

C1

 
Fig.9 : scheme of electronics circuit 

 

Modeling 

 The classical approach to study a switching electronic circuit is based on the determination of all 

possible topologies of the circuit with respect of each possible configurations. In fact there are 2
m
 topologies for 

the electronic circuit. This approach become very complicated when the number of switching elements increase. 

The proposed method, to obtain the model, is to use Bond-Graph methodology (11)(12). This approach allows to 

determine an unique state space equation of the electronic circuit under the form defined in (eq. 1). This unique 

model represent the association between switching elements and the circuit. The state equation so obtained 

includes Boolean terms. The control vector u is consequently straightforward since it contains the Boolean terms 

The Bond-Graph is given figure 10 associated with the physical system : 
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Se:E2 1

R:Ron

MTF:1/m2

I:L1

1

1

R:R3

R:R2  
 Fig.10 : Bond-Graph model 

  

Ron is the internal resistance of the switches when they are ON, and mi
 i  1 2,  are Boolean 

variables representing the switching logical rules. 

 mi  for i 1,2  are the Boolean control input which represents the state of two switches. mi  0  if the 

i th
 transistor is in OFF state and mi  1  if it is in ON state.  

The mathematical model of the circuit can be represented in this form : 

   x A u x B u u                      with  x 













L1

C1

 

The input vector u  is composed of the Boolean parameters as   
1

2

u
u

u

m

m














1

2

 as the input vector . The 

matrices A  and B  are expressed as: A
a a

a a
r












1 11 12

21 22
; B

b b

b b
r












1 11 12

21 22
 

with : 

r u u u     1 1 2 1

R3

Ron

R3

R1

R2

Ron

R2

Ron

R2

R1
     

a u11 11   










R2

L1

R3

Ron

R3

R1
 

a12 
R2

C1R1
 

a21  
R2

L1R1
 

a u u u22 1 2 11    










1

C1R1

R3

Ron

R2

Ron

R2

Ron
 

b11  E1
R2

Ron
 

b u12 11  








E2

R2

Ron

R3

Ron

R3

R1
 

b u21 21 








E1

R3

RonR1

R2

Ron
+ E1

R2

RonR1
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b22  E
R2

RonR12  

 

Consider the electrical parameters defined as : 

E1 = 12 volts

E2 = 4 volts

Ron =  0.1

R1 =  12 

R2 =  2 

R3 =  40 

L1 =  100mH

C1 =  4.7mF



























 

Then the state equation becomes : 

 x
u

u u
x

u

u
u

r r

  

  









  













 

1 86 6 8000

17 73 1 420 20

1 346 4 32000

420 8000 6 66

1

1 2

1

2 

.

.

.

.

35.46

-1.66

240
  

with 
1 1

4 5 420 201 2 r u u


 .
 

 The simulation software MATLAB-SIMULINK has been used for studying the response of the 

electrical system. 

The sampling time period used for simulation is t sim =0.001 sec. This system in closed loop can be represented 

by :  

xd
u x

q











L1

C1System+
-

Control

 
Fig.11 : Control scheme of electrical system  

Simulation: 

The target  x d  or ME, and the predefined trajectory (as a linear trajectory) have been chosen inside the 

reachable domain, with : 

  x
qd

d
















L1

C1

 3 

 0.4 

Wb

C
  

Figure 12 represents the trajectory in the state space. 

0 0.5 1 1.5 2 2.5 3 3.5
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 L1

qC1

 
Fig .12 : Trajectory in the state space 
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The time responses of electrical charge qC1  in the capacitor and the magnetic linkage L1  in  the inductor are 

represented figure 13 : 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

t

t

 L1

qC1

 
Fig.13 :Time variations of the magnetic linkage 

L1
 and the electrical charge qC1 . 

 

Figure 14 shows the variation of input variables : 

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.5

1

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.5

1

t

t

u1

u2

 
Fig.14 : Time variation of the input Boolean controls 

 

The simulation results show that the predefined tracking trajectory, obtained with the Boolean control strategy. 

 

V. A REAL TIME TRACKING TRAJECTORY 
In this section we present a control law allowing the system to track a real time trajectory (13) in the state space. 

We use the same principle for the control law design as defined previously in III (Boolean Control).  

We define a n -dimensional space all around the desired trajectory    x d t  so as to minimize the switching. 

The control strategy in closed-loop consists in determining the configuration u  at each time of intersections 

with the domain according to the point    x d t . The minimization of the commutation frequency is achieved 

because the same control is kept in the domain. The details of this procedure is outlined below. 

Procedure 

The time of switching is determined by suitable error boundaries. When the current position    x tp  goes 

outside the domain, the next configuration  Config
i

u  of input vector u is determined by the methodology 

discussed above in III (Boolean Control). The  algorithm is explained as follows : 

 In the first case, a domain Ds  is defined around the point    x d t . 

 We study if the point    x tp  is inside the domain Ds  : 
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- if  x Dp s , then the determination of the sequence u  is made by using the method presented in section III 

(Boolean Control). 

- if  x Dp s , then the same previous step control corresponding to  x p  when it was outside of the domain 

Dr is applied. 

The same algorithm is restarted at each sampling time. This procedure is illustrated by the following example 

(figure 15): 

 

V4 t

x2

x1

 ( )x tp

 

V1 t 


V2 t

 

V3 t

 ( )x td

 D t
s

 ( ) 1x tp 

 

V 11 t 

 

V 12 t 

 

V 13 t 

 ( ) 1x td 

 D t
s

1

 

V 14 t 

Real time

Trajectory

 
Fig.15: Tracking in state space 

 

 In this example at the instant t the vector  

V1 t  is chosen and at t+1 the vector  


V2 t  1  will be 

selected. 

 

Application 

 The proposed control law is illustrated on the same electronic circuit as described previously (figure 9). 

Simulation: 

The desired vector   x d  has been simulated by two sinusoidal waveforms such as : 

 

 
x

x t

x t
d

d

d


 

 

















1

2

3
1

2
6

0 4
1

5
3

sin .

. sin .

 

 

These equations simulate the vector  x
d

 in real time. Note that frequency of the waveform must respect the 

bandwidth of the system.  

Figure 16 shows the trajectory in the state space  

 

 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

 L1

qC1

 
Fig .16 : Trajectory in the state space 
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The magnetic linkage L1  in  the inductor and  the electrical charge qC1  in the capacitor, with the 

corresponding desired trajectory are represented figure 17 and figure 18. 

0 0.5 1 1.5 2 2.5
2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5
2

2.5

3

3.5

4
xd 1

 L1

t

t

 
Fig .17 : Time variation of the magnetic linkage L1  compared to the desired trajectory 
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Fig .18 : Time variation of the electric charge qC1  compared to the desired trajectory 

 

Figure 19 represents the Boolean control : 
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Fig .19 : Boolean controls  

 

VI. CONCLUSION 
 In this paper a method is proposed for the control design of systems with Boolean inputs. The problem 

of regulation and tracking has been discussed. The proposed control law has been applied in the initially time to 

follow a predefined trajectory from the initial state and the second time to track a real time trajectory. 

In both cases some remarks have been presented about the domains. If these domains are very large 

then we reduce the commutation numbers but we have low precision. Conversely if these domains are very 

small, the commutations are enhanced and we have  high precision. The domains can be defined by the 

specification sheets. 

The Bond-Graph approach has been used in this paper. One of this major advantage for Boolean control 

is to represent the model by a unique state equation including control vector. Indeed this control vector is 

characterized by the Boolean value. The other technique has drawback to obtain a multi-model representation, 

and it is less practicable when the number of switches items rises. 

 

The improvements of this approach presented in this paper are :  

 To consider whole model which give a direct link for Boolean control system. 

 To reduce the switching frequency in order to have energy low in the commutation. 

 The same example has been used in the two cases to illustrate the control scheme.  Simulation curves 

have shown that the vector  x p  reaches the desired value  x d . 

 The proposed strategy seems a few similar with the Direct Self Control (DSC). However the DSC 

technique is applied to power converter in order to control the electrical motor, while our method is considered 

as a whole method for Boolean input system as well as hydraulic system (valve control), chemical processes and 

so on. In addition a control criterion has been developed which minimize angle, and the news technique for 

tracking trajectory (predefined and real time trajectory) has been presented. 

 Currently new studies are performed in the laboratories. Their goal are to define a minimization 

frequency switching criterion and other part are to compare different strategies of Boolean control presented in 

introduction. 

REFERENCES 
1). Seguier G., Labrique F. (1989).  

"Les convertisseur de l'électronique de puissance", Editions technique et documentation Lavoisier. 

2). S Nonaka et Y Neba (1987). 

"Analysis of a P.W.M GTO current source inverter fed induction motor drive system", IEEE 

Transaction on Industry Applications, Vol. 23, No 2. 

3). H Sira-Ramirez(1989). 

"Sliding regimes in general non linear systems : a relative degree approach", Int. J. Control, Vol. 50, No 

4, pp.1487-1506. 

4). J E.Slotine(1984). 

"Sliding controller for non-linear systems", Int. J. Control, Vol. 40, No 2, pp.421-434. 

5). Abadie  V (1994). 



Control of Binary Input Systems  

www.iosrjen.org                                                    15 | P a g e  

"Commande des systèmes continus a entrées binaire. Application aux machines electriques", Thesis of 

UNIVERSITE DES SCIENCES ET TECHNIQUE DE LILLE No 1310. In french. 

6). Habetler T.G., Profumo F., Pastorelli M., Tolbert L.M.(1992). 

"Direct torque control of induction machines using space vector modulation", IEEE Transaction on 

Industry Applications, Vol. 28, No 5. 

7). W .Leonhard, (1985) 

"Control of electrical drives", Springer, Berlin 

8). Depenbrock  M. (1988). 

"Direct self control of inverter fed induction machines", IEEE Transaction on Power Electronics, Vol. 

3, No 4. 

9). Abadie  V.  Dauphin-Tanguy G  (1993). 

"Opened Loop control of switching linear system", Journal of the Franklin Institute, Vol. 330, No 5, 

pp.799-813. 

10). Holderbaum W., Dauphin-Tanguy G ., Borne P (1998). 

"Boolean control for linear system", I.S.I.A.C International Symposium on Intelligent Automation and 

control, Wac'98 Anchorage , USA . 

11). Borne P., Dauphin-Tanguy G., Richard J.P., Rotella F., Zambettakis I.(1992). 

"Modelisation et identification des processus" Tome 1. Collection : méthode et pratique de l'ingénieur. 

Edition Technip. 

12). Ducreux J.P., Castelain A., Dauphin-Tanguy G. and Rombaut C. (1992), 

"Power electronics and electrical machines modelling using Bond-Graph ", IMACS Transactions on 

"Bond-Graph for Engineers "( eds. Dauphin-Tanguy G. and Breedveld P. ) Elsevier, NewYork 

13). Holderbaum W., Dauphin-Tanguy G ., Borne P (1998). 

"Tracking control problem for switching linear system", CESA'98 IEEE/SMC Conference Hammamet 

(Tunisia). 


