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Abstract: Vessel blowdown is common in industrial processes and can take place under a variety of operating 

conditions. Basically, it consists of the discharge of a pressurized tank or circuit, containing gas (or vapor), liquid 

or both. It is of interest the characterization of the transient leading to the complete (or, at least, partial) discharge 

of the content. This paper considers a tank partially filled with a liquid, which is discharged by suitable 

pressurization of the gas on the top. A simple model is developed to describe a slow discharge (quasi-steady 

approximation). The equations are formulated in dimensionless form to identify and discuss the influence of the 

major parameters affecting physics and dictating the engineering design of the process. The discharge of a gas-

pressurized vessel is simulated, and the effect of the relevant parameters is represented graphically. Besides, the 

effect of the liquid on the gas temperature is taken into consideration. Eventually, the generalization of the 

proposed model to non-ideal operating conditions, involving e.g. friction, lack of equilibrium, etc., is discussed. 

Keywords: Blowdown; Pressurized Vessel; Liquid Drainage; Tank Discharge. 

 

I. INTRODUCTION 
The discharge of fluids (liquids, gases, and vapor-liquid mixtures) from pressurized vessels is often 

encountered in several industrial contexts either as a step of the process or as an accidental procedure. If the 

pressure is not regulated during the discharge, the latter is preferably referred to as blowdown [1]. As significant 

examples of the variety of applications reported in the literature, the following are worth mentioning. 

Boiler blowdown [2], is required for the continuous operation of a boiler, since enables both removing 

precipitated solid materials and controlling the concentration of dissolved minerals in the water. Since in this 

case, boiler blowdown represents an energy loss, it is of utmost importance proper management of the frequency 

and duration of the procedure. 

Charge and discharge of liquid propellants to the rocket engines [3] is another important field of 

application, in which pressure transients play a primary role depending on the specific application (e.g.: military, 

aerospace, etc.) so that careful evaluation of the choice of a regulated or a blowdown feed system is needed. 

Various accidental events leading to the failure or rupture of pressurized tanks and pipelines may cause 

the blowdown. A recent review [4] presents some of the available models and tools for the optimum design of 

the blowdown process to identify their potential and limitations. This study highlights that a general approach or 

a universally applicable model cannot be found owing to the specificity of the problem and the relative 

operating conditions. Moreover, validation data are still lacking, which makes it difficult to properly evaluate 

the deviations from the ideal behaviors often assumed in the models. 

A common feature of literature works is that seldom a model is developed starting from scratch but 

most often some earlier formulation is assumed as a starting point. Though it is reasonable to avoid repetitions 

of assessed developments, it is nevertheless important to make clear the fundamental principles and the major 

assumptions lying at the basis of a formulation since the blowdown process may occur in such a variety of 

systems, processes and operating conditions that not all the available approaches are useful and can be adopted 

as alternatives. This problem arises because most of the published literature addresses a single specific problem 

(or category of problems) rather than a general approach with some exceptions listed below. 

Liquid discharge from vessels is addressed in [5] taking into account different geometries and layouts. 

Fluid discharge characteristics are determined for orifices located at any location on the vessel. However, the 

major limitation of this paper is that it only considers tank vented to the atmosphere, i.e. non-pressurized. 

Single-phase or multiphase blowdown is considered in [6] through a mechanistic homogeneous 

equilibrium model. One-dimensional mass and momentum balances are written and numerically integrated for 
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three subsystems, namely, the tank, the pipe and the nozzle. The tank is considered isobaric and isothermal 

throughout its volume, steady-state flow takes place in the pipe, where all the frictional effects are considered 

and the nozzle, which is treated as frictionless. Choked flow or discharge at atmospheric pressure is assumed 

based on the instantaneous tank pressure. Multi-compositional equations of state are used to describe the 

thermodynamics of either isothermal or isentropic blowdown process. Two-phase flow is described though the 

homogeneous model, that is using mass weighted averages of the vapor and liquid properties. The model shows 

appreciable agreement with the data relative to the discharge of gases and vapors from bottles and coiled tubes. 

The complex problem of the blowdown of pressure liquified gases from creep and knife induced cracks 

has been studied in [7], where a model is presented for the unsteady compressible chocked flow through 

openings of varying areas by implementing a crack opening model based on the plastic displacement theory. 

However, none of the above works, though stating general problems, can be applied as it is to the 

problem of the blowdown of a liquid partially filling a suitably pressurized tank, from which origins the goal of 

the present paper. A simple model based on the mass and energy conservation equations is developed into detail, 

highlighting all the simplifying assumptions, to describe the transient corresponding to the complete discharge 

of the liquid. The model equations are then written into dimensionless form to get a compact mathematical 

formulation and, most important, to identify similarity parameters useful to generalize the results as much as 

possible. A simple scheme based on finite differences is proposed for numerical integration. Eventually, a 

discussion about the major causes of deviation from ideality is provided together with indications to include 

corrective parameters in the model. 

 

II. MATERIALS AND METHODS 

1. System description and main assumptions 

The system under analysis, consisting of a vertical cylindrical vessel partially filled with a liquid, is 

shown in Fig.1. The gas cap is pressurized to speed up the drainage of the liquid from an orifice locate on the 

bottom. Thus, the flow of the liquid is due to the action of the gravity on the liquid and the expansion of the gas 

in the cap. Accordingly, the initial pressure of the gas (pg,i) is the one needed to achieve a complete drainage of 

the liquid, such that the final pressure of the gas in the tank is the external pressure (p0). 

The discharge process is studied under the following assumptions: 

1. Perfect liquid (i.e. incompressible and non-viscous). 

2. Perfect gas (i.e. ideal gas with constant specific heat capacities) 

3. Quasi-steady flow of the liquid. 

4. Quasi-static expansion of the gas. 

5. Thermal insulation towards the environment. 

Assumptions 3 and 4 correspond to a slow process (quasi-steady approximation), which enables an analytical 

treatment. Comments about deviations from this behavior, i.e. a fast discharge, will be made in Section III. 

2. Model description 

Taking as a control volume the vessel, the discharge process is described at first with a transient mass 

balance [8]: 

 
(1) 

Where  is the total mass and  is the liquid mass flow rate. 

Since only the mass of the liquid in the vessel changes, due to the discharge, . On 

the other hand, the volume of the vessel is constant ( ), leading to: 

 
(2) 
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Figure 1. Schematic of the cylindrical vessel. 

Where  is the liquid density. The meaning of (2) is as follows: the drainage of the liquid is due to the 

expansion of the gas. 

The liquid mass flow rate is expressed as: 

 (3) 

Where  is the average velocity of the liquid through the drainage valve, the cross-section of which has an area 

. 

The velocity is derived from the Bernoulli equation (mechanical energy balance) [8] across the 

drainage valve (which in the simplest representation is just a hole). It is assumed that the velocity of the liquid in 

the tank (at the inlet of the valve) is negligible compared to . 

 
(4) 

Where  is the pressure of the liquid at the bottom of the tank, which differs from the pressure of the liquid at 

the liquid-gas interface owing to the different height. Accordingly, the Stevin law states: 

 (5) 

Where  is the pressure of the gas in the cap and  is the acceleration due to gravity. Owing to the small gas 

density, the effect of the height is neglected for the gas, thus the gas pressure is uniform in the cap. 

Replacing (5) in (4) it obtained the average drainage velocity of the liquid as: 

 

(6) 

Notice that if the vessel is open on the top [5], and hence the gas is not pressurized ( , (6) 

reduces to the Torricelli equation [5], [8]. 
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The liquid mass flow rate (3) is then expressed through (6) as: 

 
(7) 

Both the gas pressure and the liquid height are a function of the gas volume, as follows. 

The quasi-static expansion of the gas is described by a polytropic process [8]: 

 
(8) 

Recall that the gas reaches the external pressure when it fills the whole volume of the vessel, i.e. all the 

liquid has been discharged. The polytropic exponent  is expected to take values between 1 (isothermal 

expansion) and  (adiabatic expansion). More on this subject, which depends on the occurrence of heat 

transfer between the liquid and the gas will be said in a dedicated section. 

The liquid heigh is easily related to the vessel height (see Fig. 1) and finally to the gas volume, 

knowing the vessel cross-section : 

 

(9) 

Replacing Equations no. 8 and 9 into Equation no. 7, the mass balance expressed by (2) becomes a first 

order differential equation which describes the transient of the gas volume: 

 

(10) 

The differential problem is completed by the initial condition: , which depends on the initial 

filling of the vessel. 

 

3. Dimensionless formulation of the governing equation 

(10) is conveniently set into dimensionless form to achieve a more compact formulation and to 

generalize its meaning by highlighting the relative magnitude of the various terms. 

First, the dimensionless gas volume is defined as , so that the first and the second term inside 

the square brackets become, respectively:  and . 

Second, the terms inside the square brackets are set into dimensionless form dividing by , which 

leads to the following expression of the right-hand term of Equation no. 10: 

 

(11) 

Notice that the group: 

 

(12) 

Represents the ratio between the relative pressure due to the liquid column and the external pressure. Being the 

order of magnitude of the term that represents the Torricelli equation (as shown above) it will be called 

Torricelli number. 
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Then, it is evident that (10) can be set into dimensionless form dividing by , which leads to the 

following expression of the left-hand term: 

 

(13) 

Accordingly, the factor multiplying the time derivative of the dimensionless gas volume has the 

dimensions of a time, and can be considered a characteristic time ( ) for the process under consideration: 

 

(14) 

Equation no. 14 can be made more meaningful by the following manipulations: 

 

(15) 

Where  is a characteristic length resulting from the vessel height and a contraction factor (ratio between the 

vessel area and the discharge valve area), and  is a characteristic velocity, i.e. the velocity if the drainage 

would take place at the reference (external) pressure. The characteristic time clearly increases if  increases and 

 decreases, which makes clear the dynamics of the drainage process. 

In particular, the characteristic length increases if: 

1. The vessel volume increases. 

2. The drainage valve area decreases. 

The characteristic velocity increases in case of: 

1. Low-density liquids. 

2. High-pressure discharge. 

It is useful to define a dimensionless mass flow rate of the discharged liquid as 

. 

Finally, the dimensionless time  is replaced to get the dimensionless formulation of the 

differential problem: 

 

(16) 

Where the initial value of the dimensionless gas volume is the initial gas fraction. 

Once the value of the polytropic exponent  is determined based on the considerations exposed in the next 

section, the differential problem of Equation no. 16 can be solved by numerical integration. 

 

4. Thermal considerations 

According to the assumption of thermal insulation of the vessel, one might be tempted to assume 

adiabatic the quasi-static expansion undergone by the gas, which would result in an isentropic process. 

However, the gas-liquid interface is not adiabatic, hence heat transfer takes place across it. Moreover, also mass 

transfer (due to evaporation) is likely to take place, which is assumed to give a negligible contribution. 

Turning then the attention to sensible heat exchange between the gas and the liquid across the interface, 

the energy balance states that the same amount of heat gained by the gas must be lost by the liquid (or vice 

versa):  
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 (17) 

Where  is the specific heat capacity of the gas undergoing the polytropic process. Its relationship 

with the polytropic exponent is well-known [8]: 

 
(18) 

Assuming a complete lack of thermal equilibrium between the gas and the liquid, , which 

causes the gas expansion to be adiabatic, i.e.  or . 

On the other hand, in case of thermal equilibrium between the phases ( ): 

 

(19) 

Which happens to vary along the process, and obviously causes the variation of the polytropic exponent in turn. 

Notice that only if  is small, the expansion tends to be isothermal ( ) whereas increasing 

, the expansion tends to become adiabatic ( ). 

Finally, noticing that the mass of the gas in the vessel is constant, the specific heat capacity can be more easily 

calculated replacing . Clearly, the initial density  depends also on the initial temperature of 

the gas in the cap. Considerations about the behavior of the temperature will be made in the discussion of the 

results. 

 

5. Numerical integration 

The differential problem (16) is solved by a finite difference scheme [9]. Denoting the right-hand term 

of the governing equation as , the range of variation of  (between  and 1) is divided into  equal 

intervals, denoted by the subscript  such that the equation is written as: 

 
(20) 

From which the evolution of the transient is computed as: 

 

(21) 

 

III. RESULTS AND DISCUSSION 
The major results can be summarized in plots representing the transient of the most significant 

quantities, i.e. the dimensionless gas volume, the dimensionless mass flow rate of the discharged liquid 

(dimensionless drainage rate), the dimensionless pressure and temperature for the two limiting cases of adiabatic 

and isothermal expansion. The initial filling ratio and the Torricelli number are taken as parameters. 

 

1. Adiabatic expansion 

 The initial pressurization of the gas required to get a complete discharge of the liquid is determined 

solely by the initial liquid filling fraction of the vessel ( ). Fig. 2 represents the initial pressure  
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Figure 2. Initial gas pressurization versus initial liquid 

filling fraction. 

Figure 3. Transient of the dimensionless gas volume 

for different Torricelli numbers. 

  
Figure 4. Transient of the dimensionless drainage rate 

for different Torricelli numbers. 

Figure 5. Influence of the Torricelli number of the 

dimensionless discharge time. 

 

ratio ( ) as a function of . The higher the initial liquid filling (i.e. the percentage of the vessel 

volume initially occupied by the liquid) the higher the gas pressure required for the blowdown. 

 The transient can be represented either reporting either the dimensionless gas volume or the 

dimensionless drainage rate against the dimensionless time. Here, two parameters are relevant, namely, the 

initial liquid filling fraction and the Torricelli number. As an example, Fig. 3 and Fig. 4 report the behavior of  

and  for an initial liquid filling fraction of 0.8 (corresponding to  = 0.2). It is assumed that the gas is 

diatomic (corresponding to dry air or nitrogen, the latter being a very common inert gas). The higher the 

Torricelli number, the faster the blowdown. This result is explained keeping in mind the meaning of the 

parameter, which quantifies the effect of the gravity (though the height of the liquid column). At the same initial 

pressurization (same , same ), the higher the liquid column, the faster the liquid discharge. 

 Moreover, it is interesting to note that the effect of the gravity is significant only for Torricelli numbers 

higher than 1, as shown in Fig. 5, where it is seen that for  the dimensionless discharge time is not 

significantly affected by this parameter, thus the transient is dominated by the dynamics of the gas expansion. 

 The maximum benefit of the pressurization in terms of the reduction in the discharge time is then 

obtained for small values of , i.e. when the action of the gravity is negligible. Fig. 6 compares the transient 

of a pressurized vessel and a non-pressurized one (for which the Torricelli equation rules) for  and 

, respectively. It is seen that the pressurization significantly shortens the transient for the smaller  

whereas the benefit for the larger  is marginal. 

To highlight the benefit of the pressurization at small values of the Torricelli number, it is useful to 

define the ratio between the discharge time of a non-pressurized vessel and the one of a pressurized vessel, 

which is reported in Fig. 7 as a function of the initial liquid filling. The transient of a pressurized vessel is 

between about 3.75 and 5 times faster than the one of a non-pressurized vessel. Moreover, the lower the liquid 

filling, the higher the benefit. 
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Figure 6. Comparison of the transient of the dimensionless gas volume for NTo = 0.1 (left) and 10 (right). 

  
Figure 7. Discharge time ratio versus initial liquid 

filling ratio for small Torricelli number. 

Figure 8. Dimensionless gas temperature transient for 

an adiabatic expansion. 

 

A final remark is about the gas temperature. The adiabatic expansion determines a temperature drop as 

depicted in Fig. 8 showing the time behavior of the ratio , which can be interpreted as a cooling ratio, for 

the same operating conditions of Fig. 3. Notice that the final (absolute) temperature of the gas is almost halved 

(for ). Thus, depending on the initial temperature, the adiabatic expansion may lead to intense cooling, 

which may affect either the vessel wall (e.g. embrittlement) or the gas-liquid interface (e.g. 

condensation/freezing). 

 

2. Non-adiabatic expansion 

The change in the polytropic exponent, previously discussed, impacts on the dynamics of the discharge, 

which slows down. Actually, in the adiabatic expansion all the internal energy variation of the pressurized gas is 

converted into useful work to push the liquid out of the vessel, whereas in a non-adiabatic expansion part of the 

internal energy variation of the pressurized gas is exchanged as heat between the gas and the liquid, which also 

causes the initial gas pressurization to be lower. 

As an example, Fig. 9 shows the dimensionless discharge time and the initial pressurization as a 

function of the polytropic exponent in the allowable range for the same filling conditions of Fig. 3. A Torricelli 

number of 0.1 has been chosen to neglect the effect of gravitational drainage. It is seen that  

monotonically increases with , which is accompanied by a decrease of the dimensionless discharge time, 

noting that the transient for the adiabatic blowdown ( ) is about 20% faster than for the isothermal one 

( ). 

In case of non-adiabatic expansion, the isothermal process is the most significant as suggested by 

inspection of (19). Considering applications related to water, oils or liquid fuels storage, the density ratio  

has an order of magnitude of 103. The specific heat capacity  takes values in the range between about 1 to 4 kJ 
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kg-1 K-1 (e.g., from [10]: Acetone, 2.15; Alcohol propyl, 2.37; Benzene, 1.8-1.92; Fuel Oil, 1.67-2.09; Gasoline, 

2.22; Kerosene 2.01; Water, 4.19). Accordingly, the factor  is of an order of magnitude of 1 MJ kg-1 K-1. 

 

 
Figure 9. Influence of the polytropic exponent on the initial gas pressurization and on the discharge time. 

 

As a result, except in the very final stage of the expansion, where  approaches 0, the resulting 

values of  are so higher than both  and  that the corresponding  is practically equal to 1. 

 

3. Deviations from ideality 

The results discussed in the previous section are affected by deviations from some of the ideal 

assumptions stated at the beginning. Some of these deviations can be included in the model resulting in a more 

detailed formulation and/or a more articulated procedure of calculation. Some others, however, require a change 

in the modelling strategy and cannot be included in the present analysis. In the following, the three major 

deviations from ideality are identified and briefly discussed: 

 

1.1. Real liquid behavior. 

Since the liquid compressibility is negligible in a very wide range of the pressurization, real effects are 

accountable to viscosity, which determines frictional effects. The most important is the concentrated pressure 

loss at the discharge valve, where an (almost) sudden contraction of the cross-section area of the flow takes 

place. This aspect can be introduced in the model through a discharge coefficient  to reduce the kinetic 

energy of the flow in Equation no. 4, as follows: 

 
(22) 

The effect will be an increase in the discharge time due to a lower discharge velocity. In [ref] the discharge 

coefficient is taken constant for the sake of simplicity but  is generally a function of the Reynolds number 

(and hence of the drainage velocity ), as shown in [11], which provides models for both Newtonian and non-

Newtonian fluids. Clearly, the dependence on the drainage velocity makes the solution of the problem iterative. 

 

1.2. Fast discharge. 

Such deviation implies the failure of the quasi-steady approximation to describe the transient. On one 

hand, the lack of thermodynamic equilibrium between the gas and the liquid makes the gas expansion practically 

adiabatic. On the other hand, the polytropic (and, specifically, the isentropic) model for the (adiabatic) 

expansion is no longer realistic. Frictional effects in both the gas and the liquid determine three-dimensional 

pressure and temperature fields, which calls for a transient CFD simulation of the process. However, for 

practical use, an empirical approach could still be adopted, considering an average gas pressure and temperature, 

and fitting experimental data to find an apparent polytropic exponent in the range . In any case, such 

an empirical extension of the model requires careful consideration, and its validity is limited to the tested 

conditions. 
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IV. CONCLUSION 
A simple model to study the liquid blowdown of a gas-pressurized vessel has been derived based on 

mass and energy balances. A dimensionless formulation has been introduced to highlight the order of magnitude 

of the competing phenomena, i.e. the pressurization and gravity. The resulting first-order differential equation 

has been solved numerically through a finite difference scheme, leading to the following major results: 

1. The higher the Torricelli number (gravitational effect), the faster the blowdown. 

2. The effect of the gravity is, however, not significant for Torricelli numbers lower than 1: in this case, the 

transient is mainly dominated by the dynamics of the gas expansion. 

3. For small Torricelli numbers, the transient of a pressurized vessel is between about 3.75 and 5 times faster 

than the one of a non-pressurized vessel. Moreover, the lower the liquid filling, the higher the benefit. 

4. The adiabatic expansion may lead to intense cooling, depending on the expansion ratio. 

5. In the case of non-adiabatic expansion, the isothermal process represents the limits for a complete thermal 

equilibrium between the gas and the liquid. 

6. The transient of the isothermal expansion is slower than for the adiabatic expansion. 

Finally, possible deviations from the idealizations introduced in the model have been considered 

suggesting simple ways to account for real effects (e.g. friction). 
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