On Fsgb-Connectedness and Fsgb-Disconnectedness in Fuzzy Topological Spaces

Megha Kulkarni¹ Jenifer.J.Karnel²

¹GAT, Bangalore; ⊠: meghavkulkarni92@gmail.com ²SDMCET, Dharwad; ⊠: jenifer.k@gmail.com Received 15 March 2024; Accepted 30 March 2024

Abstract: The theme of this article is to introduce and investigate a new type of fuzzy strongly generalized bconnectedness namely fsgb-connectedness and fsgb-disconnectedness. Some of their properties and characteristics have been determined.

AMS subject Classification: 54A40

Keywords: fsgb-connectedness, extremally fsgb-disconnectedness, fts.

I. Introduction:

Several real-world issues in economics, medicine, engineering and social science contain imprecise data, and their solutions rely on uncertainty. L.A.Zadeh[17] established the concepts of fuzzy sets and fuzzy operations to deal with such uncertainty. C.L.Chang[6], who introduced fuzzy topological spaces, presented the analytical aspect of fuzzy set theory practically. The theory of fts was developed by several authors. The concept of b-open sets in general topology was first developed by Andrejevic [1].

Jenifer and Megha introduced the fsgb-closed sets concepts in [9], the concept of fsgb-continuous, fsgb-irresolute, fsgb-open and fsgb-closed mappings in [10] and some new forms of fsgb-continuous maps namely fuzzy strongly generalized b-continuous functions namely strongly fsgb-continuous, perfectly fsgb-continuous and completely fsgb-continuous mappings in fts [12]. Also a new weaker form of continuous functions known as upper fsgb-continuous multifunctions and lower fsgb-continuous multifunctions in [13]. In this article, the concepts of fsgb-connectedness and fsgb-disconnectedness are introduced and their properties are investigated.

II. Preliminaries:

Throughout this study $(L,\tau), (M, \sigma)$ and (N, γ) (or simply *L*, *M* and *N*) are fuzzy topological spaces (in-short as fts). The interior, closure and compliment of a fuzzy subset *P* of (L,τ) are denoted by Int(*P*), Cl(*P*) and *P^c* respectively. Unless specifically specifies, no separation axiom are expected.

2.1 Definition[9] A fuzzy set(in short f-set) *P* in a fts *L* is called fb-open iff $P \leq (IntCl(P) \lor ClInt(P))$.

2.2 Definition[9] Fb-interior and Fb-closure of a fuzzy set *P* is as follows

(i)bInt(*P*) = $v \{ Q : Q \text{ is a fb-open set of } L \text{ and } P \ge Q \}.$

(ii) $bCl(P) = \wedge \{R: R \text{ is a fb-closed set of } L \text{ and } R \ge P\}.$

2.3Definition [9] A f-set P in an fts L is known as fuzzy generalized closed set (in short(fg-CS) if $Cl(P) \le Q$, whenever $P \le Q$ and Q is f-OS in L.

2.4Definition [9]A fuzzy open set (in short f-OS) *P* in a fts *L* is called a fsgb-CS that is fsgb-closed set if $bCl(P) \le Q$, whenever $P \le Q$ and *Q* is fg -open set in *L*.

2.5Definition [9]A f-OS P in a fts L is called a fsgb-open set(in short fsgb-OS) if $bInt(P) \ge Q$, whenever $P \ge Q$ and Q is fg -open set in L.

2.6Definition[10] A mapping $f: L \to M$ is said to be fsgb-continuous if $f^{-1}(P)$ is fsgb-closed set in L, for every fuzzy closed set P in M.

2.7Definition[10]A map $g: L \to M$ is known as fsgb-irr that is fsgb-irresolute map, if $g^{-1}(P)$ is fsgb-CS in L for every fsgb-CS P in M.

2.8Definition[14] A fuzzy point $l_p \in Q$ is known as quasi-coincident with f-set Q denoted by $l_p qQ$ iff p + q

Q(l) > 1. A f-set Q is quasi-coincident with a f-set R denoted by $Q_q R$ iff there exists $l \in L$ such that (l) + Q(l) = 0.

R(l) > 1. If Q and R are not quasi-coincident the we denote it as $Q_{\bar{q}}$ R.Note that $Q \leq R \leftrightarrow QQ_{\bar{q}}(1-R)$.

Fuzzy Strongly Generalized b-Connectedness in fts. III.

Definition 3.1. A fuzzy topological spaces(L,τ) is known as fsgb-CdS that is fuzzy strongly generalized bconnected space iff 0 and 1 are the only f-sets which are fsgb-closed and fsgb-open (in short fsgb-clopen) sets.

Definition 3.2. A fts (L,τ) is known as fsgb-Cds between f-sets P and Q if there does not exist fsgb-clopen set R in *L* such that $P \leq R$ and $R_{\bar{a}}Q$.

Theorem 3.3. A fts(L,τ) is fsgb-connected iff (L,τ) is fsgb-CdS between each pair of its non-zero f-sets.

Proof. Consider P and Q are pair of non-zero f-sets of L. Let (L,τ) is not fsgb-Cds between P and Q. Then there exist a fsgb-clopen set R of L such that $P \leq R$ and $R_{\bar{\alpha}}Q$. As P and Q are non-zero f-sets and R is proper fsgbclopen set of L. Hence(L,τ) is not fsgb-CdS, which the contradicts the hypothesis.

Conversely, consider (L,τ) is not fsgb-CdS. Then there is a proper f-set R of L that is fsgb-clopen set. Thus (L,τ) is not fsgb-CdS between R and 1 - R, which contradicts the hypothesis.

Theorem 3.4. A fts(L,τ) is fsgb-connected iff (L,τ) is fsgb-CdS between P and Q iff there is no fsgb-clopen set R such that $P \leq R \leq 1 - Q$.

Proof: It is evident.

Theorem 3.5. If a fts (L,τ) is fsgb-CdS between f-sets P and Q such that $P \leq P_1$ and $Q \leq Q_1$, then (L,τ) is fsgb-Cds between P_1 and Q_1 .

Proof. Consider (L,τ) is not fsgb-CdS between P_1 and Q_1 . Then there exists a fsgb-clopen set R of L such that $P_1 \leq R$ and $R_{\bar{q}}Q_1$. Thus $P \leq R$. Now $R_{\bar{q}}Q$. If $R_{\bar{q}}Q$, then there exists a point $a \in L$ such that R(a) + Q(a) > 1. Hence $R(a) + Q_1(a) > R(a) + Q(a) > 1$ and $R_{\bar{a}}Q_1$, which contradicts the hypothesis.

Theorem 3.6. If a fts (L,τ) is fsgb-CdS between f-sets P and Q, then P and Q are non-zero.

Proof. Assume that = 0, then P is fsgb-clopen set of L such that $P \leq P$ and $P_{\bar{q}}Q$. Thus (L,τ) cannot be a fsgb-CdS, which contradicts the hypothesis.

Theorem 3.7. Every fsgb-CdS is f-CdS.

Proof. Consider (L,τ) be fsgb-CdS. Let (L,τ) is not f-CdS and so \exists a proper f-set $P(P \neq 0, P \neq 1)$ such that P is f-clopen set. As every f-CS is fsgb-CS. Thus (L,τ) is not fsgb-CdS, which contradicts the hypothesis. Therefore (L,τ) is f-CdS.

Theorem 3.8. A fts (L,τ) is fsgb-CdS iff (L,τ) has no non-zero fsgb-OS P and Q such that P + Q = 1.

Proof. Consider (L,τ) is fsgb-CdS. If (L,τ) has 2 non-zero fsgb-OS P and Q such that +Q = 1, so P is a proper f-set that is fsgb-clopen set of L. Thus (L,τ) is not fsgb-CdS, which contradicts the hypothesis.

Conversely, consider (L,τ) is not fsgb-CdS, then it as a proper f-set P of L that is fsgb-clopen set. Thus = 1 - P, is a fsgb-OS of L so that P + Q = 1, which contradicts hypothesis.

Remark 3.9. A fts (L,τ) is fsgb-CdS iff it has no non-zero f-set P and Q such that P + Q = 1, fsgb-Cl(P) +O = P + fsgb-Cl(O) = 1.

Theorem 3.10. Consider $\mathcal{G}: (L,\tau) \to (M,\sigma)$ is fsgb-irr, surjection and L is fsgb-Cds, then M is fsgb-CdS.

Proof. Consider L be a fsgb-CdS.Let M is not fsgb-CdS and then there is a proper f-set P of $M(P \neq 0, P \neq 1)$ such that P is fsgb-clopen set. As g is fsgb-irr, $g^{-1}(P)$ is fsgb-clopen set of Lsuch that $g^{-1}(P) \neq 0$ and $g^{-1}(P) \neq 1$. Therefore (L,τ) is not fsgb-CdS, which contradicts the hypothesis. Thus (M,σ) is fsgb-CdS.

Theorem 3.11. Consider $g: (L,\tau) \to (M,\sigma)$ is fsgb- \mathbb{CN} map, surjection and *L* is fsgb-CdS, then *M* is fsgb-CdS. **Proof.** Consider L be a fsgb-CdS. Let M is not fsgb-CdS and then there is a proper f-set P of $M (P \neq 0, P \neq 1)$ such that P is fsgb-clopen set. As q is fsgb- $\mathbb{C}\mathbb{N}$ map, $q^{-1}(P)$ is fsgb-clopen set of L such that $q^{-1}(P) \neq 0$ and $g^{-1}(P) \neq 1$. Therefore (L,τ) is not fsgb-CdS, which contradicts the hypothesis. Thus (M,σ) is fsgb-CdS. **Theorem 3.12.** Consider(L,τ) be fsgb $T_{1/2}$ space and f-CdS then (L,τ) is fsgb-CdS.

Proof. Consider(L,τ) is fsgb $T_{1/2}$ space and f-CdS. Let(L,τ) is not fsgb-CdS and then \exists a proper f-set P of L $(P \neq 0, P \neq 1)$ such that P is fsgb-clopen set. As (L,τ) is fsgb $T_{1/2}$ space, P is f-clopen set. Thus (L,τ) is not f-CdS, which contradicts the hypothesis. Therefore (L,τ) is fsgb-CdS.

Theorem 3.13. Every fsgb-CdS is fb-CdS (fgb-Cd and fbg-Cd)

Proof. Consider (L,τ) be a fsgb-CdS. Suppose that (L,τ) is not fb-cd (fgb-Cd and fbg-Cd) and then there exists a fuzzy set P ($P \neq 0, P \neq 1$) so that P is fb-open (fgb-open and fbg-open) and also fb-close (fgb-close and fbgclose). Since every fb-close (fgb-close and fbg-close) is fsgb-close, (L,τ) is not fsgb-cd, which contraducts the assumption. Thus (L,τ) is fb-connected (fgb-close and fbg-close).

The inverse implication is untrue, as it can be seen from the below illustrations.

Example **3.14.** Consider $L = \{x, y, z\}$.Let the fuzzy sets be $P = \{(x, 0.4), (y, 0.3), (z, 0.5)\}$ $Q = \{(x, 0.2), (y, 0.6), (z, 0.1)\}$

Consider $\tau = \{0, P, 1\}$, then the fuzzy sets Q is not a f-OS and f-CS of L.

Thus (L, τ) is f-CdS but not fsgb-CdS.

Consider $L=\{x, y, z\}$. Let the fuzzy set be $P = \{(x, 0.3), (y, 0.6), (z, 0.2)\}$ Example 3.15. $Q = \{(x, 0.1), (y, 0.4), (z, 0.5)\} R = \{(x, 0.2), (y, 0.5), (z, 0.3)\}$

International organization of Scientific Research

Consider $\tau = \{0, P, Q, 1\}$, then the FS *R* is not a fb-OS and a fb-CS of *L*. Thus (L, τ) is fb-cd but not fsgb-CdS. **Example 3.16.** Consider $L=\{x, y, z\}$. Also consider the fuzzy sets $P = \{(x, 0), (y, 1), (z, 0)\} Q = \{(x, 1), (y, 1), (z, 0)\} R = \{(x, 0), (y, 1), (z, 1)\}$. Let $\tau = \{0, P, Q, 1\}$, then the fuzzy set *R* is fsgb-CS but not fsgb-OS of *L*. Thus (L, τ) is fsgb connected.

Fig. 3.1. Interrelations of fsgb-connected spaces in fts.

IV. Extremally fuzzy strongly generalized b-disconnectedness.

Definition 4.1. A fts (L, τ) is called as extremally fsgb-disconnected (briefly e-fsgb-d) if fsgb-cl(P) is fsgb-OS, whenever *P* is fsgb-OS.

Theorem 4.2. For a fts (L, τ) the following statements are equivalent.

(i) (L, τ) is e-fsgb-d.

(ii) For every fsgb-CS P, fsgb-int(P) is fsgb-CS.

(iii) For every fsgb-OS P, we have fsgb-cl(P) + fsgb-Cl[1-fsgb-Cl(P)] = 1.

(iv) For each pair of fsgb-OS P and Q in (L,τ) with fsgb-Cl(P) + Q = 1, we have fsgb-Cl(P) + fsgb-Cl(Q) = 1.

Proof.

(i)→(ii) Consider R he

Consider *P* be any fsgb-CS. Let us prove that fsgb-*int*(*P*) is fsgb-CS. Now 1 - fsgb-int(P) = fsgb-Cl(1 - P). As *P* is fsgb-CS, 1 - P is fsgb-OS and so by assumption (i) fsgb-Cl(1 - P) is fsgb-OS, which implies that 1 - fsgb-int(P) is fsgb-OS. Thus fsgb-int(P) is fsgb-CS. (ii) \rightarrow (iii)

Let P be any fsgb-OS. Now 1 - fsgb-Cl(P) = fsgb-int(1 - P). Thus, fsgb-Cl(P) + fsgb-Cl[1 - fsgb-Cl(P)] = fsgb-Cl(P) + fsgb-Cl[fsgb-int(1 - P)] = fsgb-Cl(P) + fsgb-int(1 - P) by (ii)

= fsgb-Cl(P) + 1 - fsgb-Cl(P) = 1. (iii) \rightarrow (iv) Let *P* and *Q* be any two fsgb-OS such that fsgb-Cl(P) = 1 -----(1). Then by (iii) $\operatorname{fsgb-}Cl(P) + \operatorname{fsgb-}Cl[1 - \operatorname{fsgb-}Cl(P)] - \dots (2)$. But from (1) 0 = 1 - fsgb-Cl(P)and from (1) and (2), 1 - fsgb-Cl(P) = fsgb-Cl[1 - fsgb-Cl(P)]i.e., 1 - fsgb-Cl(P) = fsgb-Cl(Q). Thus $\operatorname{fsgb-}Cl(P) + \operatorname{fsgb-}Cl(Q) = 1$. $(iv) \rightarrow (i)$ Let *P* be any fsgb-OS in (L, τ) Put Q = 1 - fsgb-Cl(P) ------(3) Now by assumption (iv) fsgb-Cl(P) + fsgb-Cl(O) = 1i.e., fsgb-Cl(Q) = 1 - fsgb-Cl(P) -----(4)From (3) and (4), Q = fsgb-Cl(Q).

Hence Q is fsgb-CS and so fsgb-cl(Q) is fsgb-CS. Then 1 - fsgb-Cl(Q) is fsgb-OS and from (4) fsgb-Cl(P) is fsgb-OS in (L, τ) . Therefore, (L, τ) is e-fsgb-d.

Theorem 4.3. A fts (L,τ) is an e-fsgb-d space iff fsgb-Cl(P) = fsgb-int[fsgb-<math>Cl(P)] for each $P \in fsgb-O(L,\tau)$.

Proof. Consider *P* be a fsgb-OS in e-fsgb-d space (L, τ) . Then fsgb-cl(P) is a fsgb-OS in (L, τ) . Therefore fsgb-Cl(P) = fsgb-int[fsgb-<math>Cl(P)].

Conversely, if *P* be a fsgb-OS then fsgb-Cl(P) = fsgb-int[fsgb-<math>cl(P)]. Thus fsgb-Cl(P) is a fsgb-OS. Hence (L, τ) is a e-fsgb-d space.

Theorem 4.4. A fts (L,τ) is a e-fsgb-d space iff fsgb-int(Q) = fsgb-Cl[fsgb-<math>int(Q)] for every $Q \in fsgb-C(L,\tau)$.

Proof. Consider Q be a fsgb-CS in e-fsgb-d space (L, τ) . Then(1 - Q) is a fsgb-OS and fsgb-Cl(1 - Q) is fsgb-OS in (L, τ) . Thus, fsgb-Cl(1 - Q) = fsgb-int[fsgb-<math>Cl(1 - Q)]. This implies that 1 - fsgb-Cl(1 - Q) = 1 - fsgb-int[fsgb-<math>Cl(1 - Q)]. Therefore, fsgb-int(Q) = fsgb-Cl[fsgb-int(Q)].

Conversely, if Q is a fsgb-OS then 1 - Q is fsgb-CS in L and by hypothesis we get fsgb-int(1 - Q) = fsgb-Cl[fsgb-int(1 - Q)]

and 1 - fsgb-int(1 - Q) = 1 - fsgb-Cl[fsgb-int(1 - Q)].

Thus, fsgb-Cl(Q) = fsgb-int[fsgb-Cl(Q)]. Hence, (L, τ) is a e-fsgb-d space.

References:

- [1]. D.Andrijevic, On b-open sets, Mat.vesnik, 48 (1996), 59-64.
- [2]. G. Balasubramanian, Fuzzy Disconnectedness and Its Stronger Forms, Indian J. pure appl. Math., 24(1)(1993), 27-30.
- [3]. G. Balasubramanian, Pre Connectedness and Pre Disconnectedness in Fuzzy Topological Spaces, Indian Journal of Mathematics, 41(1999), 333-346.
- [4]. S.S.Benchalli and Jenifer Karnel, On Fuzzy b-open sets in Fuzzy Topological Spaces, J.Computer and Mathematical Sciences, 1, 2010, 127-134.
- [5]. A. S. Bin Shahna, On fuzzy strong continuity and fuzzy pre continuity, Fuzzy Sets and Systems, 44(1991), 303-308.
- [6]. C. L. Chang, Fuzzy Topological Spaces, J.Math.Anal.Appl. 24(1968), 182-190.
- U. V. Fatteh and D. S. Bassam, Fuzzy Connectedness and Its Stronger Forms, Journal Math. Ann. Appl, 111(1985), 449-464
- [8]. T.Fukutake, R.K.Saraf, M.Caldas and S.Mishra, Mappings via Fgp-closed sets, Bull. of Fukuoka Univ. of Edu. 52(2003), 11-20.
- [9]. Jenifer J Karnel and Megha Kulkarni, On Fuzzy Strongly Generalized b-closed sets in fuzzy topological spaces, *International Journal of Advanced and Innovative Research* Volume 6,Issue 2, April-June (2019).
- [10]. Jenifer J Karnel and Megha Kulkarni, On Fsgb-Continuous, Irresolute, Open and Closed Mappings in Fuzzy Topological Spaces.(communicated).

- [11]. R. Lowen, Connectedness in Fuzzy Topological Spaces, Rocky Mountain Journal of Mathematics, 11(3)(1981), 427-433.
- [12]. Megha Kulkarni and Jenifer J Karnel ,On Some New Forms of Fsgb-Continuous Mappings in Fuzzy Topological Spaces, *International Journal of Applied engineering Research*,ISSN 0973-4562 Volume 18,Number 4(2023) pp.262-265.
- [13]. Megha Kulkarni and Jenifer J Karnel , On Upper and Lower fsgb-Continuous Multifunctions in Fuzzy Topological Spaces.(communicated)
- [14]. P. M. Pu and Y. M. Liu, Fuzzy Topology, I. Neighbourhood Structure of a Fuzzy Point and Moore-Smith Convergence, J. Math. Anal. Appl., 76(2)(1980), 571-599.
- [15]. K. S. Raja Sethupathy and S. Laksmivarahan, Connectedness in Fuzzy Topology, Kybernetika, 13(3)(1977), 190-193.
- [16]. R. Santhi, D. Jayanthi, Generalized Semi-Pre Connectedness in Intuitionistic Fuzzy Topological Spaces, Ann. Fuzzy Math. Inform, 3(2)(2012), 243-253.
- [17]. R. K. Saraf and M. Khanna, Fuzzy Generalized Semi Pre Closed Sets, J.Tri.Math.Soc., 3(2001), 59-68.
- [18]. S. S. Thakur and S. Singh, On Fuzzy Semi-Pre open and Fuzzy Semi-Pre Continuity, Fuzzy Sets and Systems, 98(3)(1998), 383-391.
- [19]. L. A. Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353