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Abstract: This research investigates the effect of varying beats on the steady Poincare solutions of nonlinear 

duffing oscillator. A non-dimensional second order differential equation based on the general governing equation 

for nonlinear duffing is presented and solved numerically using the fourth order Runge-Kutta method. The fractal 

disk method is used to characterize the Poincare solutions, and scatter plots of the oscillator per unit space area 

show chaotic and non-uniform distributions. Qualitatively, it is observed that the Poincaré solutions for Duffing 

oscillators subject to harmonic excitation are visually similar to those obtained at zero beat value. However, upon 

closer examination, differences in dimensions become apparent. Specifically, the Duffing system under harmonic 

excitation yields an estimated dimension value of 1.346 ± 0.02, whereas the dimension for the Duffing system 

under zero beat conditions is determined to be 1.368 ± 0.06, resulting in a difference of 1.65%. The variation in 

beats distorts the Poincare diagrams and dimensions, with beat values of -5%, -2%, 3%, and 5% resulting in 

dimensions that are different from the zero beats dimension by 9.93%, 6.30%, 22.27%, and 14.78%, respectively. 

Overall, this research provides insights into the behavior of nonlinear duffing oscillators under varying beats.  
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I. INTRODUCTION 
Nonlinear oscillators have been extensively studied in various fields, including physics, engineering, and 

mathematics, due to their relevance in modeling complex systems. The nonlinear Duffing oscillator is a prominent 

example that exhibits complex behavior under certain conditions [1][2]. Harmonic excitation of the Duffing 

oscillator can result in chaotic responses under certain drive parameter combinations [3]. However, the impact of 

varying beats on the steady-state Poincare solutions of this oscillator has not received much attention in the 

literature. 

Nonlinear dynamical systems are ubiquitous in science and engineering, and their behavior is often 

complex and difficult to analyze mathematically [4]. Numerical methods provide powerful tools for solving these 

systems, allowing researchers to investigate their behavior and make predictions about their future evolution [5]. 

One commonly used approach is the numerical integration of differential equations, where the equations of motion 

are discretized and solved iteratively [6]. Other methods, such as the shooting method and finite difference 

methods, can also be used to solve nonlinear dynamical systems [7]. The application of numerical methods to 

nonlinear dynamical systems has been a subject of active research in recent years [8]. A deep neural network 

method for solving high-dimensional nonlinear dynamical systems was proposed by [9] while [10] proposed a 

hybrid numerical method for solving nonlinear systems with both smooth and nonsmooth functions. Another 

recent development is the use of machine learning techniques, such as reinforcement learning, to optimize the 

performance of numerical solvers for nonlinear dynamical systems. Numerical methods have been applied to a 

wide range of problems in physics, biology, chemistry, and engineering. For example, in fluid mechanics, 

numerical simulations are used to study turbulent flows and complex fluid dynamics [11]. In biology, numerical 

methods have been used to model the spread of infectious diseases and the growth of cancer tumors [12]. In 

engineering, numerical methods are used to optimize the design of structures and mechanical systems, such as 

aircraft wings and wind turbines [13]. 

Recent studies have shown that fractal analysis is a promising tool for studying the behavior of nonlinear 

systems, including oscillators [14]. Fractal analysis quantifies the self-similarity and complexity of a system and 

has been applied to characterize the Poincare solutions of nonlinear duffing and pendulum oscillators under 

periodic excitations [15]. Fractals are mathematical objects that display the same pattern at every scale and are 

often described as manifolds without differentiability [16]. Unlike Euclidean geometry, which struggles to analyze 
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complex and rough shapes, fractal geometry can accommodate all the complex shapes that exist in the real world 

[17]. Examples include trees, coastlines, cloud formations, leaf venations, fruit shapes, and voice signals. Fractal 

geometry is not limited to the unnatural shapes of Euclidean geometry. Fractals can be broken down into smaller 

versions of themselves, with each part being a copy of the entire pattern. This phenomenon of self-similarity 

describes how a small fragment of a fractal resembles a larger piece or even the entire object when examined. 

Fractals are commonly used in computer modeling to reproduce irregular patterns and structures found in nature 

because they produce irregular shapes and surfaces through the repetition of geometric patterns at smaller and 

smaller scales, which classical geometry cannot represent [18]. 

The present study aims to investigate the effect of varying beats on the steady Poincare solutions of 

nonlinear Duffing oscillators using the fractal disk method for characterization. The study builds on recent works 

by [15] and [19] who have characterized the behavior of nonlinear systems, including duffing and pendulum 

oscillators under selected periodic excitations with fractal disk and Gram-Schmidt orthogonalized lyapunov 

exponents respectively. The use of fractal analysis in this study provides a more detailed understanding of the 

behavior of nonlinear Duffing oscillator under varying beats and offers insights into the potential applications of 

fractal analysis in nonlinear dynamics, chaos theory, and control systems. 

 

II. METHODOLOGY 

Duffing Equation 

The current research utilized a pre-existing simplified version of the duffing equation (2.1). This equation is 

expressed in a dimensionless form to reduce the number of adjustable parameters involved [15]. 

ẍ + γẋ−
𝒙

𝟐
 (1 x2) =  Po sin (ωDt)                                                                                                            (2.1) 

The symbols x, ẋ, and ẍ correspond to the oscillator's displacement, velocity, and acceleration with respect to a 

reference point. The degree of damping in the system is controlled by the parameter γ. The amplitude strength of 

the harmonic excitation is denoted by P0, while the excitation frequency is represented by ωD. The variable t 

signifies the time. 

Beat Phenomenon in Duffing Oscillator  

To Simulate the beat phenomenon in a duffing set up, a single equation representing the two super-imposed waves 

was generated from the addition of two harmonic functions. The two waves were similar but non-identical as a 

result of a difference in frequency.   

For the Duffing Equation; the Harmonic Functions representing the waves were 

 𝑥1 = 𝑃0 sin 𝜔1𝑡                                                                                                                                              (2.2.1) 

𝑥2 = 𝑃0 sin 𝜔2𝑡                                                                                                        (2.2.2) 

Where;  

|𝜔2 − 𝜔1| = 𝑏  ,  𝜔1 ≈ 𝜔2 ,    b = beat value 

∴   𝜔2 = 𝜔1 + 𝑏                                                                                                     (2.2.3) 

Combining both wave equations 2.2.1 and 2.2.2 the equation below was obtained; 

𝑥1 + 𝑥2 =  𝑃0 sin 𝜔1𝑡 + 𝑃0 sin 𝜔2𝑡                                                                                                       (2.2.4) 

Substituting the value of equation (2.2.3) into equation (2.2.4) we obtained; 

𝑥1 + 𝑥2 =  𝑃0 sin 𝜔1𝑡 + 𝑃0 sin(𝜔1 + 𝑏)𝑡                                                                                            (2.2.5) 

Referring to the Trigonometry relation; 

Sin 𝐴 + sin 𝐵 = 2 sin(
𝐴+𝐵

2
) cos(

𝐴−𝐵

2
)                                                                                                   (2.2.6) 

 𝑃0 sin 𝜔1𝑡 + 𝑃0 sin(𝜔1 + 𝑏)𝑡 = 2𝑃0 sin(
𝜔1𝑡+𝜔1𝑡+𝑏𝑡

2
) cos(

𝜔1𝑡−𝜔1𝑡−𝑏𝑡

2
) 
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= 2𝑃0 sin(
2𝜔1𝑡+𝑏𝑡

2
) cos(

−𝑏𝑡

2
)                                                                                                   (2.2.7) 

Rescaling the term to have the same strength as the Excitation amplitude of the individual waveforms; 

                                    𝑥1 + 𝑥2 =
1

2
× 2𝑃0 sin(𝜔1 +

𝑏

2
)𝑡 cos(

𝑏

2
)𝑡                                                   (2.2.8) 

The beat value b, is represented as a percentage of 𝜔1 and the qualitative descriptions are shown below. 

 

Figure 2.1: sine wave form of equation 2.21 

 

Figure 2.2: sine wave form of equation 2.2.2 

Combined Wave Form 

 

Figure 2.3: Superposing of the Two Similar Waves (i.e. from figures 2.1 and 2.2) 
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Figure 2.4: Resultant of the Two Superposed Waves represented by equation 2.2.8 

Fourth-Order Runge-Kutta Scheme  

The present study utilized the popular constant operation time step fourth order Runge-Kutta schemes to simulate 

equation (1) in the transformed pair of first order rate equations. The respective details of the scheme are provided 

in equations (2.3.1) to  (2.3.4) substituting y for ( θ1, θ2) , x for (t) and constant time step h. 

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

6
[𝐾1 + 2(𝐾2 + 𝐾3) + 𝐾4]                                                                                                     (2.3) 

𝐾1 = 𝑓(𝑥𝑖, 𝑦𝑖)                                                                                                     (2.3.1) 

𝐾2 = 𝑓 (𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

ℎ𝐾1

2
)                                                                                                                          (2.3.2) 

𝐾3 = 𝑓 (𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

ℎ𝐾2

2
)                                                                                                                       (2.3.3) 

𝐾4 = 𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + ℎ𝐾3)                                                                                                                 (2.3.4) 

 

Study parameters 

Duffing Oscillator 
From literature research, this study focuses on the parameters defined by; the non-dimensional forcing amplitude 

(Po = 0.168), damping constant (γ = 0.21 ). Simulation of these parameters was carried out over the drive frequency 

ωD = 1.  The simulation time step is fixed at h= 
𝑇𝑃

500
 for 𝑇𝑃 =

2𝜋

ω𝐷
 and the initial conditions for studied cases is 

(0, 0). The simulation was executed for 2000-excitation periods (i.e. 50𝑇𝑃 − 2050𝑇𝑃).   

 

Characterization Methods 

The fractal characterization method used was the disk count method. 

A brief description of how the process was carried out in the computer code developed for fractal analysis is given. 

The procedure essentially consisted of the following steps:-  

(i) Determining the characteristic length of the Poincaré shape 

(ii) Determining the size of the disk to be used in covering the figure based on the zooming or resolution 

(iii) Completely covering the shape with disks of the size determined in the step (ii) 
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(iv) Counting the number of disks required to complete step (iii) a number of times and taking note of the 

optimum count figure (number) 

(v) Repeating steps (iii) and (iv) for ten levels of zooming or resolutions (from 1 to 10) 

(vi) Tabulating from resolution level 1 to 10 and making a log-log plot of the resolution level against the 

optimum number of disks required to completely cover the figure (scatter plots) 

(vii) Taking the slope of the log-log plot and assigning it as the fractal dimension of the figure. 

All of steps (i) to (vii) were carried out in code with the only contact with the program being the inputting of the 

parameter combination at the beginning of the code run, and the collection of the fractal dimension number at the 

end of the code run.  

Using the Disk count method, the result of the fractal analysis was a decimal between 0.0 and 2.0. This is because 

the Poincaré section for the system response of this study was embedded in 2-dimensional space. The guideline 

for characterization for a fractal embedded in 2-dimensional space is based on number values and is stated here. 

A fractal dimension number that is equal to 0.0 denotes periodic response. A fractal dimension number that is 

greater than 0.0 but less than one 1.0 denotes response that is no longer periodic but not yet chaotic (could be 

period doubling, quasi-periodic, period two, period-three, e.t.c). A fractal dimension number that is greater than 

1.0 denotes chaotic response, with the degree of chaos increasing with larger fractal dimension numbers. 

Fractal dimension can be obtained with the mathematical equation given as   

Y α XD                                                                                                                                                                   (2.5) 

Proportional related equation (2.5) can be re-written as  

Y = KXD                                                                                                                                                             (2.5.1) 

X = Number of Disks (same size) used to overlay the characteristic length (AB) of a fractal image in 2-dimensional 

Euclidean space.  

Y = Number of Disk required to overlay fractal image with corresponding characteristic length (AB) in 2-

dimension Euclidean space.  

D = Fractal dimension. This will be referred in this study as Estimated Disk dimension for Disk count method.  

K = Constant of proportionality  

Take natural logarithm (any base) of both sides of equation (2.5.1) to make it a linear function, this yields  

In(y)= DIn(x) + InC                                                                                                                        (2.5.2) 

Rewrite equation (2.5.2) simply as (2.5.3) 

y = Dx+C                                                                                                                                                          (2.5.3) 

An algorithm based on Disk count method and incorporated with equation (2.5.3) was developed to enable the 

estimation of dimension for selected fractals of this study using least square regression schemes. The algorithm 

was coded in FORTRAN language and can compute transient and steady solutions of fractals (scatter plots of 

Poincare results) and Disk count method. 
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III. RESULTS AND DISCUSSION 

Comparison of the result with literature 

Duffing Oscillator 

Comparison was done in the validation step for the Poincaré sections, firstly under harmonic excitation. The 

Poincare patterns in figure 3.2 compare excellently well with those reported by [20], amplitude (Po = 0.168), 

damping constant (γ = 0.21) fixed drive frequency (ω=1) in figure 3.1. 

 

Figure 3.1: Scatter plot diagram of Duffing Oscillator at (ωD  = 1, γ=0.168 and Po = 0.21) [20] 

 

Figure 3.2: Scatter plot diagram of Duffing Oscillators at (ωD  = 1.0, γ=0.168 and Po = 0.21 b = 0.0) 

Validation of code using published poincare results 

Duffing Oscillator 

Figure 3.3 shows Poincare solutions of harmonically excited duffing covered with disk size of 2 and 3 respectively. 

Figure 3.4 shows the Poincare solutions (scatter plots), with attractor layout of duffing oscillator under beat value 

of 1%  using disk scale of 2 and 3 respectively. The scatter plots distribution per unit space area varies non-

uniformly from one location to another. This shows that nonlinear duffing oscillators under varied beat value are 

chaotic. Tables 3.1and 3.2 show the variation of optimum counted disks with increasing observation scale number 

for the referenced harmonic excitation and the periodic excitation (beat value of 1%) respectively.  
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Figure 3.3: Poincare section of harmonically excited duffing oscillator showing the attractor layout for scale 2 

and scale 3 disks 

Table 3.1:  The generated report (10 trials) of disk laying of the Poincare (harmonic excitation) 

 

     

Figure 3.4: Poincare section of duffing Oscillators (at zero beat) showing the attractor layout for scale 2 and 

scale 3 disks 

 

 

 

 

 

 

Scale 

Optimum 

disk 

count 

Trial 

1 

Trial 

2 

Trial 

3 

Trial 

4 

Trial 

5 

Trial 

6 

Trial 

7 

Trial 

8 

Trial 

9 

Trial 

10 

1 2 2 3 2 2 2 2 2 2 2 2 

2 4 6 5 4 5 5 4 4 5 4 5 

3 8 9 8 8 9 9 8 8 8 9 8 

4 12 12 12 14 12 12 13 15 12 12 12 

5 16 17 20 19 18 16 19 17 18 17 18 

6 21 23 24 23 21 22 22 23 21 22 23 

7 23 28 28 27 23 27 28 27 28 29 26 

8 29 32 31 32 33 33 30 33 34 34 29 

9 36 36 40 40 39 39 37 40 38 38 38 

10 40 41 45 40 44 46 41 41 45 43 44 
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Table 3.2: The generated report (10 trials) of disk laying of the Poincare (1% beat value) 

 

 

Fig 3.5: Graph of Dimension plotted against beat value for a range of 0% to 5% 

Fig 3.5, shows the relationship between the variance in beat value and the Dimension of the Poincare Results. 

Qualitatively, the Poincaré results of Duffing oscillators subjected to harmonic excitation resemble those obtained 

at zero beat value. However, upon characterizing the results, differences in dimensions are observed. The 

dimension estimated for the Duffing system under harmonic excitation is 1.346 ± 0.02, while the dimension for 

the Duffing system at zero beats is 1.368 ± 0.06, resulting in a difference of 1.65%. This suggests that the harmonic 

excitation introduces subtle changes in the system's dynamics. 

Furthermore, as the beat value is gradually varied, the qualitative appearance of the Poincaré diagram undergoes 

further distortion. The dimensions also undergoes changes, but in a non-systematic pattern. For beat values of -

5%, -2%, 3%, and 5%, the dimensions of the Poincaré results are found to be 1.505 ± 0.03, 1.455 ± 0.02, 1.063 ± 

0.09, and 1.167 ± 0.06, respectively. These values deviate from the dimension obtained at zero beats by 9.93%, 

6.30%, 22.27%, and 14.78%, respectively. 

IV. CONCLUSION 
The study demonstrates that varying the beat value in the Duffing system leads to non-systematic 

distortions in the Poincaré results. The changes in dimensions and the qualitative appearance of the Poincaré 

diagram indicate that even small variations in the beat value can have a notable impact on the system's behavior. 

These findings highlight the sensitivity of the Duffing system to changes in the excitation conditions and 

emphasize the need for further investigation to understand the underlying mechanisms driving these complex 

dynamics. 
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