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Abstract: A numerical approach to micropolar Jeffrey fluid flow over linearly stretching sheet is applied. The 

medium is taken porous in which sheet is stretching linearly. The governing equations of the problem are 

converted into similarity variables using suitable similarity transformation. The equations thus obtained are 

solved numerically by in built technique bvp4c in MATLAB. The influences of various pertinent parameters 

like micro-coupling parameter, Deborah number, Magnetic field parameter, Spin gradient viscosity parameter, 

Micro-inertia density parameter, Heat generation parameter, Lewis number, Prandtl number and Porosity 

parameter are depicted graphically. 

Keywords Micropolar fluid, Heat generation, Jeffrey fluid, Magnetohydrodynamic, Porous medium, heat 
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I. Introduction 
Eringen [1] developed the idea of micropolar fluids, which contain microscopic components that 

connect the macroscopic velocity field and the rotating motion of the particles. Hard particles suspended in a 

fluid solution make up these fluids. The formation of colloidal fluids, liquid crystals, biological structures, etc. 

may all be explained using this idea. A controlled cooling system is necessary since cooling speed is crucial for 

product manufacturing. Since thermal radiation is a well-understood phenomenon, it has become quite simple to 

deal with the extreme heat produced by numerous industrial activities, including nuclear reactors, spacecraft, 

etc. A heated surface emits electromagnetic radiation in all directions, which travels at the speed of light directly 

to its point of absorption in the process known as thermal radiation. A surface's total radiant heat energy is 

proportional to the fourth power of its absolute temperature, creating a term for the heat gradient in the energy 

equation. The flow behavior of non-Newtonian fluids cannot be described by the traditional Navier-Stokes 

equations. As a result, the literature suggests various non-Newtonian model types. The non-Newtonian fluid has 

drawn the attention of researchers over the last few years, as is evident from its use in business and the creative 

world. Non-Newtonian liquids frequently behave differently from Newtonian liquids, especially in a few 

designing applications. One of the rate type materials is a subclass of non-Newtonian liquids called Jeffrey fluid. 

It demonstrates the fluid's linear viscoelastic action, which has numerous uses in the polymer industry. Jeffrey 

fluid can have several forms, one of which is diluted polymer solution. Most fluid models use the Jeffrey fluid, a 

less difficult direct model that uses time derivative rather than convected derivative. The characteristics of 

retardation and relaxation times can be represented using this liquid model. A few of these fluids are discussed 

in (Hayat and Mustafa [2], Hayat and Obaidat [3], Nadeem and Fang [4], Turkyilmazoglu and Pop [5], and 

Qasim [6]). The Jeffrey fluid was also utilized by Sharma et al. [7] to simulate the flow of blood through small 

arteries. An examination into the effects of a magnetic field on the flow of the Jeffrey fluid in small tubes in a 

porous media was conducted by Nallapu and Radhakrishnamacharya [8]. Heat transfer in MHD micropolar 

Jeffery fluid flow over a stretching sheet in porous medium in the presence of thermal radiation investigated and 

solved numerically by vandna et al.[9]. Other studies on the Jeffrey model have been conducted by Ellahi et al. 

[10], Khan et al. [11], and Vaidya et al. [12]. 

Das et al. [13] investigation radiative flow of MHD Jeffrey fluid past a stretching sheet with surface 

slip and melting heat transfer .Vandna et al. [14] studied the MHD micropolar fluid flow over a permeable 

channel and thermal radiation is also taken into account for the problem. They obtained an analytic solution of 

the problem by perturbation method (HPM).MHD heat transfer fluid flow over a stretching cylinder thorough a 

porous medium in the presence of heat generation/absorption effect studied by Dhermendar et al.[15]. They 

show that when rise in the curvature parameter and porosity parameter, the temperature gradient also increased 

in the boundary layer area around the cylinder. Mahabaleshwar et al. [16] investigated and solved numerically a 

MHD fluid flow heat transfer over a stretching/shrinking sheet in the presence of heat source/sink and thermal 
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radiation effects by using CNTs. The upper branch solutions of the magnetic field profile are analytically stable 

compared to the lower branch solutions. The relation between nonlinear mixed convection and thermal radiation 

in the case of Newtonian fluid flow over non linear stretching sheet investigated and solved numerically Panday 

et al. [17]. They demonstrate that when linear convection parameter increases, the flow velocity increases near 

the sheet and decreases away from the sheet.   Megahed et al. [18] examined the analysis of MHD flow near an 

unstable stretched sheet with varying fluid characteristics, thermal radiation, and heat flux. On MHD unsteady 

free convective rotating flow by Jeffrey fluid having ramping wall temperature, Krishna [19] investigated the 

ion slip and Hall effects. Khader et al. [20] found the numerical solution of MHD unsteady micropolar fluid 

flow caused by stretched/shirked surface with thermal radiation and heat source. The study of the motion of 

electrically conducting fluids in the presence of a magnetic field, or the interaction of a magnetic field and the 

fluid velocity of such fluids, is known as magnetohydrodynamics (MHD). Examples of such systems include 

dynamos and MHD pumps. Many studies employ the MHD flow with heat and mass transfer because of the 

primary effect of the magnetic field [21], [22], [23], [24]. The varied characteristics of MHD non-Newtonian 

fluid flow over a stretching surface were examined by Adegbie et al. [25] and Malik et al. [26]. It was 

determined that a changing thermal conductivity value increases fluid temperature. Study that is analytical and 

numerical electrically conductive fluid is now a significant component of many engineering scientific fields, 

including MHD generators and nuclear reactors, among others. Additionally, it has a wide range of important 

technological and industrial applications, including biometric pumps, smart lubrication systems, and device 

separation. In the domain of biological fluids, many researchers have considered MHD studies [27], [28]. The 

study of convective heat transfer in fluid-saturated porous media has drawn attention because of the wide range 

of industries it can be applied to, particularly geothermal energy recovery, food processing, fibre and granular 

insulation, packed bed reactor design, and dispersion of chemical contaminants in various chemical industry and 

environmental processes [29]. In a porous medium with a low pressure gradient, Ahmed et al. [30] studied the 

effects of radiation on MHD boundary layer convective heat transport. Through a porous media, Butt et al. [31] 

discovered heat production effects on MHD Jeffery fluid. 

 

Mathematical formulation 

A steady two-dimensional incompressible Jeffrey micropolar fluid flow in a porous medium over a 

stretching sheet coinciding with the plane y=0 is considered, and the flow is confined to the plane y > 0. The 

surface is assumed to stretch linearly with velocity𝑈𝑤 = 𝑎𝑥, where a is stretching constant. Here, the co-

ordinates (x, y) are such that the x-axis is chosen parallel to the vertical surface, and the y-axis is taken normal 

to it, and (u, v) are the velocity components of the flow, and N defines the internal speed of the micropolar 

particles. g defines the gravity. A uniform magnetic field of strength 𝐵0 is applied normal to the sheet. (Fig.1.). 
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The governing equations with corresponding boundary conditions for the said problem are 
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Where u and v are the velocity components in the x and y directions, respectively 𝜆1 is the ratio of the relaxation 

and retardation time, 𝜆2 is the relaxation time, T is the fluid temperature, 𝜈 =
𝜇

𝜌
 is the kinematic viscosity, 𝜇 is 

the coefficient of fluid viscosity, 𝜌 is the fluid density, K∗ is the permeability of the porous medium, 𝜅 is thermal 

conductivity of fluid, 𝐶𝑝 is specific heat at constant pressure, 𝐷𝐵  Brownian diffusion and 𝛼 is thermal 

diffusivity. 

The boundary conditions of the problem are defined as follows 

𝑢 = 𝑈𝑤  , 𝑣 = 0, 𝑇 = 𝑇𝑤 , 𝑁 = 0 𝑎𝑡 𝑦 = 0        (6) 

𝑢 → 0, 𝑁 → 0, 𝑇 → 𝑇∞,
𝜕𝑢

𝜕𝑦
→ 0 𝑎𝑡 𝑦 → ∞         (7) 

The sheet velocity and temperature are 𝑈𝑤 and   𝑇𝑤  , respectively, and are assumed to be 

𝑈𝑤 = 𝑎𝑥 , 𝑇𝑤 = 𝑇∞ + 𝑏𝑥 , b are positive constants        (8) 

Here by introducing the following Similarity variables, we have 
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Where 𝜓 = 𝜓(𝑥, 𝑦) is the stream function are 

Using Similarity Transformations (9), Equation (2), (3), (4) and (5) become 

(1 + 𝐴1)𝑓′′′ + (1 + 𝜆2)[𝑓𝑓′′ − 𝑓′2
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𝜙′′ + 𝐿𝑒𝑃𝑟𝑓𝜙′ = 0          (13) 

Where 
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The non-dimensional parameters 𝐴1, 𝛽, 𝑀, 𝜆𝜊, 𝐵, Δ, and 𝐿𝑒  represent micro-coupling parameter , Deborah 

number, magnetic field parameter, spin gradient viscosity parameter, micro-inertia density parameter, heat 

generation parameter and Lewis parameter, respectively, where as Pr and Kp represent Prandtl number and 

porosity parameter, respectively. 

Boundary conditions defined by (6) and (7) are uniquely formed in similarity as follows 

𝑓(0) = 0 , 𝑓′(0) = 1 , 𝜃(0) = 1 , 𝑔(0) = 0 𝑎𝑡 𝜂 = 0      (14) 

𝑓′(𝜂) → 0 , 𝑔(𝜂) → 0 , 𝜃(𝜂) → 0 , 𝑓′′ → 0 𝑎𝑡 𝜂 → ∞      (15) 

Some of essential physical parameters, like skin coefficient and Nusselt’s number, which are defined as. 
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Solution algorithm 

To solve boundary value problems (10)-(13) with boundary conditions given by (14) and (15), we used built-in 

solver called bvp4c function in MATLAB software package. The algorithm is based on to reduce the nonlinear 

ordinary differential equations (10)-(13) with boundary conditions (14) and (15) into the system of first order 

nonlinear differential equations as follows. 

𝑓 = 𝑦1, 𝑓′ = 𝑦2, 𝑓′′ = 𝑦3, 𝑓′′′ = 𝑦4, 𝑔 = 𝑦5 , 𝑔′ = 𝑦6, 𝜃 = 𝑦7, 𝜃′ = 𝑦8, 𝜙 = 𝑦9, 𝜙′ = 𝑦10  (18) 

Using (16), Equation (8)-(10) reduce to first order nonlinear ordinary differential equations 
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Graphical results and discussion 

The objective of the present paper is to study the steady MHD micropolar Jeffery fluid flow over 

linearly stretching sheet in porous medium with heat generation. The transformed Equations (10), (11), (12) and 

(13) along with the boundary conditions (14) and (15) were solved numerically by the bvp4c (boundary value 

problem fourth order Runge–Kutta collocation method) routine in MATLAB software and the results thus 

obtained were developed into graphs in which the behaviour of non-dimensional parameters like micro-coupling 

parameter, Deborah number, magnetic field parameter, spin gradient viscosity parameter, micro-inertia density 

parameter, heat generation parameter and Lewis parameter  etc. The impact of pertinent parameters on the 

simulate velocity, temperature, concentration, skin friction coefficient, and micro-rotation is been discussed in 

this section. To illustrate the computed results, some figures are plotted and explained. 
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Fig. 2 Effect of magnetic field parameter on simulated velocity 

 

Figure 2 shows the effect of magnetic field on fluid velocity as M is increasing fluid velocity gradually increases 

from surface of the sheet to outwards and tumbling down with other parameters 𝐴1 = 0.5, ∆= 1, 𝜆2 = 1, 𝛽 =
1, 𝐾𝑝 = 1, 𝐵 = 0.5, 𝑃𝑟 = 1, 𝐿𝑒 = 1, 𝜆0 = 1 

 
Fig. 3 Effect of coupling parameter on Simulated velocity 

 

Figure 3 shows the effect on the rise of coupling parameter directly affects the value of simulated velocity , as 

the coupling parameter is directly proportional to the simulated velocity ; similarly if we increase the value of 

coupling parameter, the value of simulated velocity increases above the surface and then falls below. 𝑀 =
0.5, ∆= 1, 𝜆2 = 1, 𝛽 = 1, 𝐾𝑝 = 1, 𝐵 = 0.5, 𝑃𝑟 = 1, 𝐿𝑒 = 1, 𝜆0 = 1 
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Fig. 4 Effect of spin gradient viscosity parameter on Simulated velocity 

 

Figure 4 Display the effect of the spin gradient viscosity on the value of the simulated velocity it may also 

depicts the raise of the simulated velocity on the increase spin gradient viscosity parameter. 𝐴1 = 0.5, ∆=
1, 𝜆2 = 1, 𝛽 = 1, 𝐾𝑝 = 1, 𝐵 = 0.5, 𝑃𝑟 = 1, 𝐿𝑒 = 1, 𝑀 = 0.5 

 
Fig. 5 Effect of Jeffrey fluid parameter on Simulated velocity 

 

Figure 5 denotes the effect of Jeffrey Fluid on the simulated velocity, according to the above graph we can say 

that if we increase the value of Jeffrey Fluid parameter then the simulated velocity will also increased  𝐴1 =
0.5, ∆= 1, 𝜆0 = 1, 𝛽 = 1, 𝐾𝑝 = 1, 𝐵 = 0.5, 𝑃𝑟 = 1, 𝐿𝑒 = 1, 𝑀 = 0.5 
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Fig. 6 Effect of porosity parameter on Simulated velocity 

 

Figure 6 involve the action on increasing the value of porosity parameter on the simulated velocity, this shows 

that if we increase the porosity parameter the velocity will simultaneously increased 𝐴1 = 0.5, ∆= 1, 𝜆2 =
1, 𝛽 = 1, 𝜆0  = 1, 𝐵 = 0.5, 𝑃𝑟 = 1, 𝐿𝑒 = 1, 𝑀 = 0.5 

 
Fig. 7 Effect of micro-inertia density parameter on Simulated velocity 

 

Figure 7 displays the effect of micro-inertia density parameter on simulated velocity; this explains that if we 

increase the micro inertia density parameter the simulated velocity will increase𝐴1 = 0.5, ∆= 1, 𝜆2 = 1, 𝛽 =
1, 𝜆0  = 1, 𝐾𝑝 = 1, 𝑃𝑟 = 1, 𝐿𝑒 = 1, 𝑀 = 0.5 

0 0.5 1 1.5 2 2.5 3
-5

0

5

10

15

20

25



f
(

)

 

 

B=0.6

B=0.9

B=1.2

M=0.5, =1, 
0
=1, A

1
=0.5, 

2
=1, K

p
=1, Pr=1, Le=1, =1

0 0.5 1 1.5 2 2.5 3
-5

0

5

10

15

20

25



f
(

)

 

 

K
p
=1.2

K
p
=1.6

K
p
=2.0

M=0.5, =1, 
0
=1, A

1
=0.5, 

2
=1, B=0.5, Pr=1, Le=1, =1



Numerical analysis of Magnetohydrodynamic micropolar Jeffrey fluid flow over linearly .. 

International organization of Scientific Research                                                          40 | Page 

 
Fig. 8 Effect of Deborah number on Simulated velocity 

 

Figure 8 portrays the effect of the Deborah number on simulated velocity. Velocity profile decreases as Deborah 

number increases, but after reaching 𝜂=1.697, the velocity increases. In the presence of the Deborah number, the 

fluid oscillates irregularly in the middle of the channel. 

 
Fig. 9 Effect of heat generation parameter on Simulated velocity 

 

Figure 9 denotes the significance of heat generation parameter on simulated velocity, by this graph we can 

clearly observe that by increasing the heat generation parameter, the simulated velocity will decrease 𝐴1 =
0.5, 𝐾𝑝 = 1, 𝜆2 = 1, 𝛽 = 1, 𝜆0  = 1, 𝐵 = 0.5, 𝑃𝑟 = 1, 𝐿𝑒 = 1, 𝑀 = 0.5 
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Fig. 10 Effect of Lewis parameter on Simulated velocity 

 

Figure 10 describes the effect of Lewis parameter on simulated velocity, by this graph we can observe that 

Lewis parameter is inversely proportional to simulated velocity, hence by increasing the Lewis parameter the 

velocity decreases 𝐴1 = 0.5, ∆= 1, 𝜆2 = 1, 𝛽 = 1, 𝜆0  = 1, 𝐵 = 0.5, 𝑃𝑟 = 1, 𝐾𝑝 = 1, 𝑀 = 0.5 

 
Fig. 11 Effect of Prandtl number on Simulated velocity 

 

Figure 11 shows the effect of Prandtl number on the simulated velocity, this graph displays that on increasing 

the value of Prandtl number the simulated velocity decreases 𝐴1 = 0.5, ∆= 1, 𝜆2 = 1, 𝛽 = 1, 𝜆0  = 1, 𝐵 =
0.5, 𝐾𝑝 = 1, 𝐿𝑒 = 1, 𝑀 = 0.5 

0 0.5 1 1.5 2 2.5 3
-2

0

2

4

6

8

10

12



f
(

)

 

 

Le=1.1

Le=1.5

Le=1.7

M=0.5, B=0.5, 
0
=1, A

1
=0.5, 

2
=1, K

p
=1, Pr=1,

=1, =1

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

18

20



f
(

)

 

 

Pr=0.7

Pr=0.8

Pr=0.9

M=0.5, B=0.5, 
0
=1, A

1
=0.5, 

2
=1, K

p
=1, Le=1,

=1, =1



Numerical analysis of Magnetohydrodynamic micropolar Jeffrey fluid flow over linearly .. 

International organization of Scientific Research                                                          42 | Page 

 
Fig. 12 Effect of spin gradient viscosity parameter on Micro-rotation 

 

Figure 12 exhibits influence of spin gradient viscosity parameter on micro-rotation, this graph depicts that the 

value of micro-rotation will increase until it reaches 𝜂 = 1.364  , after this number the value of micro-rotation 

will decrease 𝐴1 = 0.5, ∆= 1, 𝜆2 = 1, 𝛽 = 1, 𝑃𝑟 = 1, 𝐵 = 0.5, 𝐾𝑝 = 1, 𝐿𝑒 = 1, 𝑀 = 0.5 

 
Fig. 13 Effect of micro-inertia density parameter on Micro-rotation 

 

Figure 13 explains the effect of micro-inertia density parameter on micro-rotation, this results that the value 

micro-rotation will decrease until it reaches the 𝜂 = 1.97, then it will start to increase certainly 𝐴1 = 0.5, ∆=
1, 𝜆2 = 1, 𝛽 = 1, 𝑃𝑟 = 1, 𝜆1  = 1, 𝐾𝑝 = 1, 𝐿𝑒 = 1, 𝑀 = 0.5 
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Fig. 14 Effect of coupling parameter on Micro-rotation 

 

Figure 14 enrolls the effect of coupling parameter on micro rotation, this explains that the micro-rotation will 

decrease until the coupling parameter reaches  𝜂 = 1.697, after this the micro-rotation increases𝐵 = 0.5, ∆=
1, 𝜆2 = 1, 𝛽 = 1, 𝑃𝑟 = 1, 𝜆1  = 1, 𝐾𝑝 = 1, 𝐿𝑒 = 1, 𝑀 = 0.5 

 
Fig. 15 Effect of Δ on Temperature 

 

Figure 15 portrays the effect of heat generation parameter on Temperature, the following graph displays that the 

temperature will simultaneously increase, with the increase in the heat generation parameter   𝐵 = 0.5, 𝐴1  =
0.5, 𝜆2 = 1, 𝛽 = 1, 𝑃𝑟 = 1, 𝜆1  = 1, 𝐾𝑝 = 1, 𝐿𝑒 = 1, 𝑀 = 0.5 
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Fig. 16 Effect of Pr on Temperature 

 

Figure 16 depicts the effect of Prandtl number on Temperature; this graph shows that the Temperature will 

increase with the increase in the value of Prandtl number 𝐵 = 0.5, 𝐴1  = 0.5, 𝜆2 = 1, 𝛽 = 1, ∆ = 1, 𝜆1  =
1, 𝐾𝑝 = 1, 𝐿𝑒 = 1, 𝑀 = 0.5 

 
Fig. 17 Effect of Le on concentration profile 

 

Figure 17 shows the effect of Lewis parameter on the concentration profile, according to this graph while the 

increase in the value of the Lewis parameter the value of concentration profile will also increase 𝐵 = 0.5, 𝐴1  =
0.5, 𝜆2 = 1, 𝛽 = 1, ∆ = 1, 𝜆0  = 1, 𝐾𝑝 = 1, 𝑃𝑟 = 1, 𝑀 = 0.5 
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Fig. 18 Effect of Pr on concentration profile 

 

Figure 18 displays the effect of Prandtl number on the concentration profile, the graph depicts that the 

concentration profile increases, with the increase in the Prandtl number 𝐵 = 0.5, 𝐴1  = 0.5, 𝜆2 = 1, 𝛽 = 1, ∆ =
1, 𝜆0  = 1, 𝐾𝑝 = 1, 𝐿𝑒 = 1, 𝑀 = 0.5 

 
Fig. 19 impact of 𝛽 and  𝐴1 on skin friction coefficient 

 

Figure 19 portrays the impact of  𝛽 on the skin friction coefficient; the above graph shows that on increasing the 

value of   𝛽 the value of skin friction coefficient increases simultaneously 
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Fig.20 Variation of Nusselt number against Prandtl number 

 

Figure 20 displays the variation of Prandtl number along with the Nusselt number, according to this graph on 

increasing the value of Prandt number the value of l Nusselt number also raises 

 

II. Conclusions 
 Velocity of the fluid increases with the increasing the value of magnetic parameter, coupling parameter, 

spin gradient viscosity parameter, Jeffery fluid parameter, porosity parameter and micro-inertia density 

parameter. 

 The velocity profile decreases as Deborah number increases but after reaching 𝜂 = 1.697 the velocity 

profile increase. 

 Velocity of the fluid decreases while increases the heat generation, Lewis number and Prandtl number. 

 The value of micro-rotation increases as spin gradient viscosity parameter increases but after 

reaching 𝜂 = 1.364 the value of micro-rotation decreases. 

 The value micro-rotation will decrease until it reaches the 𝜂 = 1.97, then it will start to increase certainly. 

 Temperature profile increases when the value of heat generation and Prandtl number increases. 

 Concentration profile increases, increases the value of Lewis parameter and Prandtl number. 

 The skin friction coefficient increases when the value of Deborah number increases. 

 On increasing the value of Prandtl number, the value of Nusselt number also increases. 
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