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Abstract:- In quantum electrodynamics, s-metrics are the best way to describe the scattering of the particle and 

it gives more accurate information about what happening in the process of scattering. in this article, I would like 

to do an analysis and comparison of the main five scatterings of an electron. Frist is Crompton scattering, 

second is bremsstrahlung, a third is an electron-positron annihilation, fourth is electron-electron scattering and 

fifth is electron-positron scattering. In this article, we are also discussing hamiltonian of the system of each 
scattering. 
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I. INTRODUCTION 
The research work is introducing some basics of quantum electrodynamics and it's the lagrangian 

equation and hemeltonian operator.it can build strong base of the work. Scattering of the electron is regarded as 

the main topic of this work. there is an analisis of deferent s-metrics.  

   

II. PHENOMENON OF QUANTUM ELECTRODYNAMICS 
In classical theory, when two negative charges come near, it repels each other and going far with 

respect to each other. And the positive and negative charges attract each other and come toward each other. But 

why that’s happening no one knows. So as quantum physics does progress, Richard Feynman comes with a 

tremendous theory of quantum electrodynamics. And it solves the mystery of electromagnetism by proposing a 

theory of transmitting and receiving virtual quantum.[1] Hamiltonian of this process for a non-relativistic particle  

is described by, H=Hp+HI +HC +Htr where         
 

 
  

                
 

  is Hamiltonian of the 

particle of mass mn. charge e, and coordinate xn. and momentum pn.[1] and Hamiltonian of the transverse field is 

    
 

 
       

   
         

   
       

    where   
   

is momentum conjugate   
   

. And the hamiltonian of 

Coulomb interaction    
 

 
  

    

   
  where     

           . so, let's talk about the Lagrange of 

quantum electrodynamics. as per gauge-invariant interacting theory,  

                 wher    
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               . That's why the gauge field we can write            
 

 
           so we can 

write Lagrange of quantum electrodynamics as       
                       

                 
 

 
     

   ,so this is  how we 

can represent the theory of quantum electrodynamic. 

                    For all scattering, there are main four parts first is the propagator of particle. The second is the 

Feynman diagram third is     metrics in spinor space and the fourth is its s-metrics three scarring. first lets 

talk about The free-particle propagator. The free-particle propagator can now be constructed from the field 

operators as the vacuum expectation value                                           The free-particle 

propagator coincides with the Green function of the Schrödinger differential operator. Recall that a Green 

function of a homogeneous differential equation is defined by being the solution of the inhomogeneous equation 

with a δ-function                     
  

  
  

                    ,  The righthand side  

follows directly from the fact that the field         satisfies the Schrödinger equation and the obvious 

formula                   the free field propagator is calculated as follows                 

                           Inserting the expansion               
 
           with the wave 

functions                        
   

 

  
    

 

 
     

   

  
     and using                 δ

         so 

the right-hand side 

becomes                                                                                
                                       the factor after  (t−t ) is simply the one-particle matrix element 

of the time evolution operator                                                                      . It 

describes the probability amplitude that a single Free Particle Has Propagated from x to x  in the time t − t   > 0. 
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And For t − t   < 0, G vanishes. So The Fourier-transformed propagator is    

                                 
  

           

 

  

 

the second part is the Feynman diagram. It content most of the information of scattering. As per reputation 

theory, The propagator of the free photon depends on the gauge. It is most simple in the Gupta-Bleuler 

quantization form, where  
               

              
  

     

 

     
           

the free particle propagator of the electron was given as          
   

     

 

       
          

as per wick expansion of       
, each contraction is represented by one of these two propagators     

        0   −   in the Feynman diagram, they are pictured by the line the lines   gμ i(q2+i∈), and i  −m. 

The interaction Lagrangian is         
                              

       ,so now we can consrect vertex as  –   μ . the four-fermion 

Coulomb interactions derived from an auxiliary interaction                 The photon propagator is 

contracted with an electron current as follows        
   

 
      

        
  

                          the spinners on 

the right and left-hand side satisfy the Dirac equation, the current is conserved and 

satisfies        
   

 
      

       . the magnetic field caused by the orbital motion of an electron leads to a 

coupling of the orbital angular momentum L = x × p with a g-factor g = 1. In order to see this relative factor 2 

most clearly, consider the interaction Hamiltonian                   
            For slow electrons, we 

may neglect quantities of second order in the momenta, so that the normalization factors E/M are unity, and we 

obtain                    
   

 
      

            . At this place, we make use of the so-called Gordon 

decomposition formula       
          

           
   

 

  
         

 

  
 μ          

    where q ≡ p  − p is 

the momentum transfer. This formula follows directly from the anticommutation rules of the  -matrices and the 

Dirac equation. An alternative decomposition is 

  ’  μ            
   

 

  
            

   
 

  
 μ       

         
   . thus the hamiltonian became      

               
                  

         .The Green functions carry all pieces of information 

contained in the theory. In particular, they can be used to extract scattering amplitudes. The scattering amplitude 

of free particle can be defined like this                  
               

    
   

 

III. RUTHERFORD SCATTERING 
The scattering of electrons on the Coulomb potential of nuclei at charge Ze, 

                                                             
   

   
  

  

 
                                                                             (1) 

 

 
Fig 1: Kinematics of Rutherford scattering 

 
The current density of a single randomly incoming electron is j =  /V . It would pass through the annular ring, 

with a probability per unit time 

                                                                                                                                                         (2) 

With this probability it winds up in the solid angle dΩ. , we find the differential cross section as  
  

 Ω
   

   

 Ω
       

  

 Ω
   

 

      
 

 
 
  

  

  
 

 

                             (3)               

 Let us now see how the above cross section formula is modified in a relativistic calculation involving Dirac 

electrons. The scattering amplitude is now became 
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                                                                 (4) 

where       has only the time-like component 

                                                        
  

   
   

   

     
      

    
                                                                 (5) 

The time-ordering operator has been dropped in (4) since there are no operators at different times to be ordered 

in first-order perturbation theory. By evaluating the matrix element of the current in (4), and performing the 

space-time integral we obtain 

                                 δ       
  

     
  
 
      

                                                               (6) 

where E and E  are the initial and final energies of the electron, which are in fact equal in this elastic scattering 

process 

 

IV. COMPTON SCATTERING 

 
Fig 2 : Lowest-order Feynman diagrams contributing to Compton Scattering and giving rise to the Klein-

Nishina formula. 

 

A simple scattering process, whose cross section can be calculated to a good accuracy by means of the 

above diagrammatic rules, is photon-electron scattering, also referred to as Compton scattering. It gives an 

important contribution to the blue color of the sky. Consider now a beam of photons with four-momentum    

and polarization   impinging upon an electron target of four-momentum   and spin orientation   . The two 

particles leave the scattering regime with four-momenta kf and pf , and spin indices  f ,  f , 

respectively.scattering amplitude to this situation we have, 

                     
                    

          
                      

 
                    

              
 
     

                          (7)   

           
 

            
 

                                                                      (8) 
 

Expanding the exponential in powers of e, we see that the lowest-order contribution to the scattering 

amplitude comes from the second-order term which gives rise to the two Feynman diagrams shown in Fig. 2. In 

the first, the electron s1 of momentum p absorbs a photon of momentum k, and emits a second photon of 

momentum k   , to arrive in the final state of momentum p   . In the second diagram, the acts of emission and 

absorption have the reversed order. Before we calculate the scattering cross section associated with these 

Feynman diagrams.                                           

Classically, the above process is described as follows. A target electron is shaken by an incoming 
electromagnetic field. The acceleration of the electron causes an emission of antenna radiation. For a weak and 

slowly oscillating electromagnetic field of amplitude, the electron is shaken non-relativistically and moves with 

an instantaneous acceleration  

    
 

 
  

 

 
∈    

                                                                       (9) 

e direction of the emitted light. For a later comparison with quantum electrodynamic calculations we associate 

this emitted power with a differential cross section of the electron with respect to light. According to the 

definition in a cross section is obtained by dividing the radiated power per unit solid angle by the incident power 

flux density    
    This yields 

  

 Ω
  

  

     
 

 

        
                                                         (10) 

                                 
  

      
  

  
             ,  is the classical electron radius. 
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The scattering amplitude corresponding to the two Feynman diagrams in Fig. 12.6 is obtained by expanding : 

                 
               

    
  up to second order in e we get here we use      μ μ     K is  μ  

 

                       
     

 
          

 
              

      

After Fourier-expanding the intermediate electron propagator,          
     

     
           

 

     
   

                       
    

     
  

 

           
   

                                          
                   

        
      

 

    
        

     

                    
        

    
 

    
         

        

 

                                                       μ μ          μ μ  spatial integrals fixes the intermediate momentum in 

accordance with energy-momentum conservation, the other yields a δ (4)-function for overall energymomentum 

conservation. The result is 

           δ
               

 

           
          

          
       

where H is the 4 × 4-matrix in spinor space 

      
       

        
       

       

         
    

 

 

We have written (k,h),  k as ,  , and  (k  , h  ),  k   as  ,    , respectively, with a similar simplification 

for E and E  . The second term of the matrix H arises from the first by the crossing symmetry ↔ ’ 

∈  ∈              
Simplifications arise from the properties (12.246). It can, moreover, be simplified by recalling that external 

electrons and photons are on their mass shell, so      

                       ∈     ∈    .  

A further simplification arises by working in the laboratory frame in which the initial electron is at rest, p = (M, 

0, 0, 0). Also, we choose a gauge in which the polarization vectors have only spatial components. Then        ∈
   ∈      
since p has only a temporal component and ∈ only space components. We also use the fact that H stands 

between spinors which satisfy the Dirac equation (               
 
              . Further we use 

the commutation rules (4.566) for the gamma matrices to write 

         ∈ 

The second term vanishes by virtue of Eq. (12.248). Similarly, we see that  anticommutes with    . Using 

these results, we may eliminate the terms  +M occurring in M. Finally, using Eq. (12.247), we obtain 

       
         

            
       

 

   
       

  

    
           

     

To obtain the transition probability, we must take the absolute square of this. If we do not observe initial and 

final spins, we may average over the initial spin and sum over the final spin directions. This produces a factor 

1/2 times the sum over both spin directions, which is equal to 

             
         

    
 

  
     

          
         

          
         

     
     

 

 

V. BREMSSTRAHLUNG 

 
Fig :3 Trajectories in the simplest classical Bremsstrahlung process: An electron changing abruptly its momentum 
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Consider a trajectory in which a particle changes its momentum abruptly from p to p   

The trajectory may be parameterized as: 

                                       
Where   is the proper time. The electromagnetic current associated with this trajectory is 

      
           

  
 δ

            

After a Fourier decomposition of the δ-functions, this can be written as 

       
   

     
              

We now turn to the more realistic problem of an electron scattering on a nucleus. Here the electron changes its 

momentum within a finite period of time rather than abruptly. Still, the Bremsstrahlung will be very similar to 

the previous one. Let us consider immediately a Dirac electron, i.e., we study the Bremsstrahlung emitted 

 

 in Mott scattering. The lowest-order Feynman diagrams governing this process are shown in Fig. 12.15. The 

vertical photon line indicates the nuclear Coulomb potential  

       
  

   
  

The scattering amplitude is found from the Compton amplitude by simply interchanging the incoming photon 
field 

                                                                       ∈    
 

              

The scattering amplitude is therefore 

     
     

    
  δ            

 

      
  

 

      
  

      
 

       
       

 

       
     

 

Where 

                           
is the spatial momentum transfer. The amplitude conserves only energy, not spatial momentum. The latter is 

transferred from the nucleus to the electron without any restriction. The unpolarized cross section following 

from Sfi is                      

                 

       

 

 
  

        

     
  δ             

 

    
      

where we have used the incoming particle current density v/V = p/EMV and set 

   
 

 
   

 

      
       

     
       

       

   
     

   

  
 

    
      

     
       

       

   
     

    

  
    

 

VI. ELETRON-ELECTRON SCATTERING 

 
Fig:4 Lowest-order Feynman diagrams contributing to electron-electron scattering 

 

The leading Feynman diagrams are shown in Fig. 12.17. The associated scattering 

amplitude is given by 

         δ
    

    
                       

                                                       

       
    

             
    

           
    

    
                      

    
             

ig  (p1−p 2)^2up1 ,  1   uP2,  2   
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For the scattering amplitude     defined by 

                                                                         δ
    

    
            

We find  

                                      
    

    
              

    
            

      
  

  
    

    
                

    
            

      
  

   

There is a manifest antisymmetry of the initial or final states accounting for the Pauli principle. Due to the 

identity of the electrons, the total cross section is obtained by integrating over only half of the final phase space. 

Let us compute the differential cross section for unpolarized initial beams, when the final polarizations are not 

observed. The kinematics of the reaction in the center of mass frame is represented in Fig. 12.18, where   is the 

scattering angle in this frame. The energy E is conserved, and we denote                      . Using 

the general formula (9.311) with the covariant fermion normalization V → 1/E, we obtain d 

  

 Ω  

 
    

        
          

The bar on the right-hand side indicates an average over the initial polarizations and a sum over the final 

polarizations. More explicitly, we must evaluate the traces1 

 

     
  

 

 
       

               
 

 
     

 
 
    

  
  

 

  
   

  
      

 
  

    

  
  

 
   

   

  
 

 

    
     

 
 
       

     
 
 
    

  
 
 

  
   

  
   

 
  

    

  
  

 
 

  
   

  
 

 

   
     

    
     

 
    

    
         

This can be expressed in terms of the Mandelstam variables s, t, u 

     
   

 

   
 
 

  
 
     

 
            

 

  
 
     

 
            

 

  
  

 

 
     

 

 
          

This is leads to the Møller formula which is describe here 
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Comparing (12.364) with the classical Rutherford formula for Coulomb scattering in Eq. (12.194), we see that 
the forward peak is the same for both if we set Z = 1 and replace M by the reduced mass M/2. The particle 

identity yields, in addition, the backward peak. 

 

VII. ELETRON-POSITRON SCATTERING 
Let us now consider electron-positron scattering. The kinematics and lowest-order diagrams are depicted in 

Figs. 5 and 6Polarization indices are omitted  

 
 

 
                         Fig 5: General form of diagrams contributing to electron-positron scattering. 

Fig 6: Lowest-order contributions to electron-positron scattering 

 

and in Fig. 6 four-momenta are oriented according to the charge flow. The scattering amplitude may then be 

obtained by substituting 

     
                  

     
  
     

       
       

    
and by changing the sign of the amplitude. The center of mass cross section is then given by the formula 
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    Ω                                  
with 
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It is then straightforward to derive the cross section formula first obtained by Bhabha (1936) 

The results of Eqs. (12.362) and (12.368) may be compared with experimental data. At low energies we show in 

Fig. 12.21 some experimental data for electronelectron scattering at 90 degrees [7]. Møller’s formula (12.362) is 

a good agreement with the data. The agreement confirms the fact that the spin of the electron is really 1/2. If it 

was zero, the agreement would have been bad (see the  dashed curve in Fig. 12.21). 

Electron-positron scattering data are fitted well by Bhabha’s cross section, and the annihilation term is essential 
for the agreement. The energy of the incident particle in the laboratory frame plotted on the abscissa is chosen in 

the intermediate range where neither the nonrelativistic nor the ultrarelativistic approximation is valid. The 

numerical values show a significant departure from the ratio 2:1 between e −e − and e −e + cross sections, 

expected on the basis of a naive argument of indistinguishability of the two electrons. 
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