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Abstract: In this work,we introduced the definition of Intuitionistic Fuzzy Hyponormal operator acting on an 

IFH-space, i.e.an operator 𝕋 ∈ 𝐼𝐹𝐵(ℋ) is Intuitionistic Fuzzy Hyponormalif  𝕋∗𝑎 ≤  𝕋𝑎 , ∀𝑎 ∈ ℋor 

equivalently 𝕋∗𝕋 − 𝕋𝕋∗ ≥ 0and given some elementary properties of Intuitionistic Fuzzy Hyponormal operator 

on an IFH-space. Also, we introduced some definitions like intuitionistic fuzzy invariant, eigenvalues, 

eigenvectors and eigenspaces which are related to Intuitionistic Fuzzy Hyponormal operator in IFH-space. 

Keywords:Intuitionistic Fuzzy Adjoint operator (IFA-operator), Intuitionistic Fuzzy Hilbert space (IFH-

space), Intuitionistic Fuzzy Hyponormal operator (IFHN-operator),Intuitionistic FuzzyInvariant (IF-invariant), 

Intuitionistic Fuzzy Normal operator (IFN-operator), IntuitionisticFuzzy Self-Adjoint operator (IFSA-operator). 

 

I. INTRODUCTION 
 In 1986, Atanossov [11] introduced the notion of intuitionistic fuzzy set. Park [10] introduced the 

notion of intuitionistic fuzzy metric space (𝕋, M, N, *, ⋄) with the use of continuous t-norm * and continuous t-

conorm ⋄ in 2004. Saadati and Park [17] introduced modulation of the intuitionistic fuzzy metric space in IFH-

space using continuous t representable in 2005. The new idea of intuitionistic fuzzy normed spaces was 

introduced by Goudarzi et al. [13] and introduced the modified definition of intuitionistic fuzzy inner product 

space (IFIP-space) with the help of continuous t-representable (𝒯) in 2009. A triplet (ℋ,ℱ𝜇 ,𝑣 , 𝒯) where ℋis a 

real vector space, 𝒯 is a continuous t -representable and ℱ𝜇 ,𝑣  is an Intuitionistic Fuzzy set on ℋ2 × ℝ which was 

introduced by Goudarzi et al. [13] in 2009,and also Majumdar and Samanta [15] gave the various definition of 

IFIP-space and some of their properties using(ℋ, 𝜇, 𝜇∗).  
The definition of IFH-space first introduced by Radharamani et al. [1] in 2018, and also some 

properties of IFA & IFSA operators in IFH-space by Radharamani et al.[2]. Then Radharamani et al. 

[3]introduced the concept of Intuitionistic Fuzzy Normal operator in 2020.An operator𝕋 ∈ 𝐼𝐹𝐵(ℋ) if it 

commutes with its Intuitionistic fuzzy adjoint operator.i.e, 𝕋𝕋∗ = 𝕋∗𝕋 and their properties. In 

2020,Radharamani et al. [4],[5]giventhe definition of Intuitionistic Fuzzy Unitary operator (IFU-operator) and 

Intuitionistic Fuzzy Partial Isometry (IFPI-operator) on IFH-space ℋ, and gave some properties of these 

operators in IFH-space and also the relation with isometric isomorphism of ℋ on to itself.  

In this paper,we consider an Intuitionistic fuzzy normal operator in IFH-space and introduced the 

definition of Intuitionistic Fuzzy hyponormal operator(IFHN- operator) and we provided some important 

properties of IFHN- operator on IFH-space. And also introduce intuitionistic fuzzy invariant and eigenvectors 

and eigenspaces which is using in Intuitionistic Fuzzy Hyponormal Operator in IFH-space, which all are 

discussed in detail. 

The classification of this paper is as follows:  

Section 2 provides some preliminary definitions and theorems which are used in this paper. 

In section 3, we introduced the concept of Intuitionistic Fuzzy hyponormal operator(IFHN- operator) 

and prove some properties of Intuitionistic fuzzy hyponormal operator have been studied. 

 

II. PRELIMINARIES 
Definition 2.1: [13] IFIP-space 

 Let 𝜇:ℋ2 ×  0, +∞ →  0,1  and 𝜈:ℋ2 × (0, +∞) → [0,1] be Fuzzy sets, such that 𝜇 𝑢, 𝑣, 𝑡 +
𝜈 𝑢, 𝑣, 𝑡 ≤ 1, ∀ 𝑢, 𝑣 ∈ ℋ &𝑡 > 0. An Intuitionistic Fuzzy Inner Product Space (IFIP-Space) is a triplet 

(ℋ,ℱ𝜇 ,𝑣 , 𝒯), where ℋ is a real vector space, 𝒯 is a continuous t -representable and ℱ𝜇 ,𝑣  is an Intuitionistic Fuzzy 

set on ℋ2 × ℝ satisfying the following conditions for all u, 𝑣, 𝑤 ∈ ℋ and s, 𝑟, 𝑡 ∈  ℝ: 

(IFI – 1) ℱ𝜇 ,𝑣 𝑢, 𝑣, 0 = 0 and ℱ𝜇 ,𝑣 𝑢, 𝑢, 𝑡 > 0, for every 𝑡 > 0. 

(IFI - 2) ℱ𝜇 ,𝑣 𝑢, 𝑣, 𝑡 = ℱ𝜇 ,𝑣 𝑣, 𝑢, 𝑡 . 

(IFI - 3) ℱ𝜇 ,𝑣 𝑢, 𝑢, 𝑡 ≠ H 𝑡  for some 𝑡 ∈ ℝ iff u≠ 0,   

              where H 𝑡 =  
1, if 𝑡 > 0
0, if 𝑡 ≤ 0
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(IFI - 4) For any 𝛼 ∈ ℝ,  

ℱ𝜇 ,𝑣 𝛼𝑢, 𝑣, 𝑡 =

 
 
 

 
 ℱ𝜇 ,𝑣  𝑢, 𝑣,

𝑡

𝛼
 , 𝛼 > 0

H 𝑡 , 𝛼 = 0

𝒩𝑠  ℱ𝜇 ,𝑣  𝑢, 𝑣,
𝑡

𝛼
  , 𝛼 < 0

  

(IFI - 5) sup  𝒯  ℱ𝜇 ,𝑣 𝑢, 𝑤, 𝑠 , ℱ𝜇 ,𝑣 𝑣, 𝑤, 𝑟   = ℱ𝜇 ,𝑣 𝑢 +  𝑣, 𝑤, 𝑡 . 

(IFI - 6) ℱ𝜇 ,𝑣 𝑢, 𝑣, ∙ : ℝ → [0,1] is Continuous on ℝ ∖ {0}. 

(IFI - 7) lim𝑡→0 ℱ𝜇 ,𝑣 𝑢, 𝑣, 𝑡  =  1. 

Definition 2.2: [1], [13] IFH-space 

Let ( ℋ, ℱ𝜇 ,𝑣 , 𝒯) be an IFIP-Space with IP:  𝑢, 𝑣 = sup 𝑡 ∈ ℝ: ℱ𝜇 ,𝑣 𝑢, 𝑣, 𝑡 < 1 , ∀𝑢, 𝑣 ∈ ℋ. If 

(ℋ,ℱ𝜇 ,𝑣 , 𝒯) is complete in the norm 𝒫𝜇 ,𝑣 , then ℋ is an Intuitionistic Fuzzy Hilbert Space (IFH-Space). 

Definition 2.3: [2] IFA-operator 

 Let  ℋ,ℱ𝜇 ,𝑣 , 𝒯  be an IFH-Space and let ℙ ∈ IFB(ℋ). Then there exists unique ℙ∗ ∈IFB(ℋ) ∋

 ℙu, 𝑣   =    𝑢, ℙ∗𝑣   ∀ 𝑢, 𝑣 ∈  ℋ. 

Definition 2.4: [2] IFSA-operator 

Let (ℋ,ℱ𝜇 ,𝑣 , 𝒯) be an IFH-Space with IP: 𝑢, 𝑣 = sup  𝑡 ∈ ℝ: ℱ𝜇 ,𝑣  𝑢, 𝑣, 𝑡 < 1 , ∀ 𝑢, 𝑣 ∈ ℋ and let 

ℙ ∈IFB(ℋ). Then ℙ is Intuitionistic Fuzzy Self-Adjoint Operator, if ℙ =  ℙ∗, where ℙ∗ is Intuitionistic Fuzzy 

Self-Adjoint of ℙ. 

Theorem 2.5: [2] 

 Let (𝑉, 𝐹𝜇 ,𝜗 ,∗) be an IFH – space with IP: 𝑥, 𝑦 𝛼
𝑁,𝑀 = sup 𝑢 ∈ ℝ: 𝐹𝜇 ,𝜗 𝑥, 𝑦, 𝑢 < 1 ∀ 𝑥, 𝑦 ∈ 𝑉 and let 

𝑆∗ be the intuitionistic fuzzy adjoint operator of 𝑆 ∈ 𝐼𝐹𝐵 𝑉 . Then: 

(i)  𝑆∗ ∗ = 𝑆 

(ii)  𝛽𝑆 ∗ = 𝛽𝑆∗ 
(iii)  𝛽𝑆 + 𝛾𝑇 ∗ = 𝛽𝑆∗ + 𝛾𝑇∗ where 𝛽, 𝛾 are scalars and 𝑆 ∈ 𝐼𝐹𝐵 𝑉 . 
(iv)  𝑆𝑇 ∗ = 𝑇∗𝑆∗. 

Definition 2.6: [3] IFN-operator 

Let  ℋ,ℱ𝜇 ,𝑣 , 𝒯  be an IFH-space with an IP:  𝑢, 𝑣 = sup 𝑡 ∈ ℝ: ℱ𝜇 ,𝑣 𝑢, 𝑣, 𝑡 < 1 , ∀ 𝑢, 𝑣 ∈  ℋ 

and let ℙ ∈IFB(ℋ). Then ℙ is an Intuitionistic Fuzzy Normal Operator if it commutes with its IF-Adjoint. 

i.e.ℙℙ∗  =  ℙ∗ℙ. 

Definition 2.7: [4] IFU-operator 

 Let  ℋ,ℱ𝜇 ,𝑣 , 𝒯  be a IFH-space with IP: 𝑢, 𝑣 = sup 𝑡 ∈ ℝ:ℱ𝜇 ,𝑣 𝑢, 𝑣, 𝑡 < 1 ∀𝑢, 𝑣 ∈ ℋ and letℙ ∈

𝐼𝐹𝐵(ℋ). Then ℙ is an Intuitionistic fuzzy unitary operator if it satisfiesℙℙ∗ = 𝐼 = ℙ∗ℙ. 

Definition 2.8: [4]𝐈𝐧𝐭𝐮𝐢𝐭𝐢𝐨𝐧𝐢𝐬𝐭𝐢𝐜 Fuzzy Isometric Isomorphism 

 Let 𝑋 and Y be intuitionistic fuzzy normed linear spaces. An Intuitionistic Fuzzy isometric 

isomorphism of X into Y is a one to one linear transformation ℙ of X into Y such that 𝒫𝜇 ,𝑣(ℙ𝑢, 𝑡) = 𝒫𝜇 ,𝑣(𝑢, 𝑡) for 

every 𝑢 ∈ 𝑋. 

Theorem 2.9: [4] 

Let (ℋ,ℱ𝜇 ,𝑣 , 𝒯) be an IFH-space with IP:  𝑢, 𝑣 = sup 𝑡 ∈ ℝ:ℱ𝜇 ,𝑣 𝑢, 𝑣, 𝑡 < 1   ∀𝑢, 𝑣 ∈ ℋ and let 

ℙ ∈ 𝐼𝐹𝐵(ℋ). If ℙ is Intuitionistic Fuzzy Unitary operator if and only if it is an isometric isomorphism of ℋ 

onto itself. 

Definition 2.10: [13] IF-orthogonal 

 Let (ℋ,ℱ𝜇 ,𝑣 , 𝒯) be an IFH-space. 𝑢, 𝑣 ∈ ℋis saidto be IF-orthogonal to each other if ℱ𝜇 ,𝑣 𝑢, 𝑣, 𝑡 =

H(𝑡), for each 𝑡 ∈ ℝ and it is denoted by 𝑢 ⊥ 𝑣. 

Theorem 2.11: [13] 

 Let (ℋ,ℱ𝜇 ,𝑣 , 𝒯) be an IFH-space. The orthogonality has the following properties: 

(1) 0 ⊥ 𝑢, ∀ 𝑢 ∈ ℋ. 

(2) If 𝑢 ⊥ 𝑣 then 𝑣 ⊥ 𝑢. 

(3) If 𝑢 ⊥ 𝑣 then 𝑢 = 0. 

(4) If 𝑢 ⊥ 𝑢𝑖  (𝑖 = 1,2, … , 𝑛) then 𝑢 ⊥ ( 𝑢𝑖
𝑛
𝑖=1 ). 

(5) If 𝑢 ⊥ 𝑣 then for any 𝑎 ∈ ℝ, 𝑢 ⊥ 𝑎𝑣. 

(6) Let ℱ𝜇 ,𝑣  be IF-continuous. If 𝑢𝑛
𝜏𝐹
→𝑢, 𝑣 ⊥ 𝑢𝑛  (𝑛 = 1,2, … ) then 𝑣 ⊥ 𝑢. 

Definition 2.12: [13] 

 Let (ℋ,ℱ𝜇 ,𝑣 , 𝒯) be an IFH-space and ℳ ⊂ ℋ. ℳ⏊ is the set of all 𝑣 ∈ ℋthat are orthogonal to every 

𝑢 ∈ ℳ. 
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Theorem 2.13: [13] 

 Let (ℋ,ℱ𝜇 ,𝑣 , 𝒯) be an IFH-space, ℱ𝜇 ,𝑣  be IF-continuous and ℳ be a subset of ℋ. Then ℳ⏊ is a closed 

subspace of ℋ and ℳ ∩ℳ⏊ = {0}. 

Theorem 2.14: [13] The Pythagorean Theorem 

 Let (ℋ,ℱ𝜇 ,𝑣 , 𝒯) be an IFH-space and let 𝑢 ⊥ 𝑣. Then 𝒫𝜇 ,𝑣 𝑢 + 𝑣, 𝑡 =  𝒯(𝒫𝜇 ,𝑣 𝑢, 𝑡 , 𝒫𝜇 ,𝑣(𝑣, 𝑡)). 

Definition 2.15: [5] Intuitionistic Fuzzy Projection operator 

Let (ℋ,ℱ𝜇 ,𝑣 , 𝒯) be an IFH-space. ℋcan be decomposed into ℋ = ℳ⊕ℳ⏊, i.e. for any 𝑢 ∈ ℋ, 𝑢 = 𝑣 ⊕𝑤 

where 𝑣 ∈ ℳ&𝑤 ∈ ℳ⏊. An operator ℙfrom ℋ onto ℳ is said to be IF-projection if ℙ𝑢 = 𝑣. It is denoted by 

ℙℳ . 

Note 2.16: [5] 

Let (ℋ,ℱ𝜇 ,𝑣 , 𝒯) be an IFH-space and ℳ ⊂ℋbe a closed subspace. The IF-orthogonal projection (IF-

Projection operator) of ℋ onto ℳ is an operator from ℋonto itself such that for 𝑢 ∈ ℋ, ℙℳ𝑢 is the unique 

element in ℳ, i.e. ℙℳ𝑢 = 𝑣, 𝑣 ∈ ℳ. 

Definition 2.17: [5] Intuitionistic Fuzzy Partial isometry operator  

An operator ℙ ∈ 𝐼𝐹𝐵(ℋ) is said to be Intuitionistic Fuzzy (IF) partial isometry operator if there exists 

a closed subspace ℳ such that 𝒫𝜇 ,𝑣 ℙ𝑢, 𝑡 = 𝒫𝜇 ,𝑣 𝑢, 𝑡  for any 𝑢 ∈ ℳ and ℙ𝑢 = 0, for any 𝑢 ∈ ℳ⊥, here ℳ 

is said to be the initial space of ℙ and 𝒩 = ℛ(ℙ) is said to be the final space of ℙ. 

 

III. MAIN RESULTS 
In this section we introduced the definition of intuitionistic fuzzy hyponormal operator on IFH-space 

and some properties. Before that we introduced some preliminary definitions and theorems which are used to 

characterize intuitionistic fuzzy hyponormal operator. 

Definition 3.1: 

 Let (ℋ,ℱ𝜇 ,𝑣 , 𝒯) be an IFH-space and let𝕋 ∈ 𝐼𝐹𝐵(ℋ). Then 

(a) A scalar λ, 0 < λ < 1, is called an eigenvalue of 𝕋 if there exists non-zero 𝑎 ∈ ℋ, such that 𝕋𝑎 = λ𝑎. 

(b) A non-zero vector 𝑎 ∈ ℋ is called eigenvector of 𝕋, if thereexists λ, 0 < λ < 1, such that 𝕋𝑎 = λ𝑎. 

Remark 3.2: 

 Corresponding to an eigenvalue 𝜆 there may correspond more than one eigenvector. 

Theorem 3.3: 

 Let 𝕋be an IFN-operator on a finite dimensional IFH-space ℋ over ℝ, then  

(i) 𝕋 − λI is Intuitionistic fuzzy normal. 

(ii) Every eigenvector of 𝕋 is also an eigenvector of 𝕋∗. 

Proof: 

(i) Since 𝕋 is an IFN-operator, we have 𝕋𝕋∗ = 𝕋∗𝕋 

Also,  𝕋 − 𝜆𝐼 ∗ = 𝕋∗ − (𝜆𝐼)∗ = 𝕋∗ − 𝜆 𝐼. 
So,  𝕋 − 𝜆𝐼  𝕋 − 𝜆𝐼 ∗ =  𝕋 − 𝜆𝐼 (𝕋∗ − 𝜆 𝐼) = 𝕋𝕋∗ − 𝜆 𝕋 − λ𝕋∗ − λ𝜆   … (3.1) 

And  𝕋 − 𝜆𝐼 ∗ 𝕋 − 𝜆𝐼 = (𝕋∗ − 𝜆 𝐼) 𝕋 − 𝜆𝐼 = 𝕋∗𝕋 − λ𝕋∗ − 𝜆 𝕋 − λ𝜆   … (3.2) 

Therefore, from (3.1) and (3.2) we get 

 𝕋 − 𝜆𝐼 ∗ 𝕋 − 𝜆𝐼 =  𝕋 − 𝜆𝐼  𝕋 − 𝜆𝐼 ∗ 
Thus 𝕋− λI is an IFN-operator. 

(ii) Let 𝑎 ∈ ℋ be an eigenvector of 𝕋 corresponding to eigenvalue 𝜆. 

Which implies that, 𝕋𝑎 = 𝜆𝑎. 

Now, 

sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝕋𝑎, 𝕋𝑎, 𝑠 < 1 = sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝑎, 𝕋∗𝕋𝑎, 𝑠 < 1   

   = sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝑎, 𝕋𝕋∗𝑎, 𝑠 < 1     [since, T is Fuzzy Normal operator] 

   = sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝕋
∗𝑎, 𝕋∗𝑎, 𝑠 < 1  

Since 𝕋 − λI is an IFN-operator, therefore 𝑎 ∈ ℋ, we have 

sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣  𝕋 − 𝜆𝐼 𝑎,  𝕋 − 𝜆𝐼 𝑎, 𝑠 < 1  = sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣  𝕋 − 𝜆𝐼 ∗𝑎,  𝕋 − 𝜆𝐼 ∗𝑎, 𝑠 < 1   

Since 𝕋𝑎 = 𝜆𝑎 ⟹  𝕋𝑎 = 𝜆𝐼𝑎  ⟹  𝕋𝑎 − 𝜆𝐼𝑎 = 0  ⟹  𝕋 − 𝜆𝐼 𝑎 = 0 

Therefore, 𝕋 − 𝜆𝐼 = 0. 

Then sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣  𝕋 − 𝜆𝐼 𝑎,  𝕋 − 𝜆𝐼 𝑎, 𝑠 < 1 = 0 

⟹ sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣  𝕋 − 𝜆𝐼 ∗𝑎,  𝕋 − 𝜆𝐼 ∗𝑎, 𝑠 < 1  = 0 

Then, 𝕋 − 𝜆𝐼 ∗ = 0. 

Then for each 𝑎 ∈ ℋ, we have  𝕋 − 𝜆𝐼 ∗𝑎 = 0 

⟹ 𝕋∗𝑎 − 𝜆 𝐼𝑎 = 0 ⟹ 𝕋∗𝑎 = 𝜆 𝐼𝑎 ⟹ 𝕋∗𝑎 = 𝜆 𝑎 

Therefore, 𝑎 is eigenvector of 𝕋 corresponding to eigenvalue 𝜆 . 
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Definition 3.4: Intuitionistic Fuzzy Invariant (IF-Invariant) 

 Let (ℋ,ℱ𝜇 ,𝑣 , 𝒯)be an IFNL-space and let 𝕋 ∈ 𝐼𝐹𝐵(ℋ). A subspace ℳ of an IFNL-space ℋ is said to 

be IF-invariant under 𝕋, if 𝕋ℳ ⊂ℳ. 

Theorem 3.5: 

 Let ℳ be a closed subspace of an IFH-space and let 𝕋 ∈ 𝐼𝐹𝐵(ℋ). Then ℳ is IF-invariant under 𝕋 if 

and only if ℳ⏊ is IF-invariant under 𝕋∗. 

Proof: 

 Suppose ℳ is IF-invariant under 𝕋. 

Let 𝑏 ∈ ℳ⏊. We have to prove that𝕋∗𝑏 ∈ ℳ⏊. 

Let 𝑎 ∈ ℋ. Since ℳ is IF-invariant under 𝕋 ⟹  𝕋𝑎 ∈ ℳ. 

Since 𝑏 ∈ ℳ⏊ ⟹ sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝕋𝑎, 𝑏, 𝑠 < 1 = 0 

⟹ sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝑎, 𝕋∗𝑏, 𝑠 < 1 = 0 

Thus, 𝕋∗𝑏 ∈ ℳ⏊. 

Conversely, suppose that ℳ⏊ is IF-invariant under 𝕋∗. 

Since ℳ⏊ is closed subspace of an IFH-space ℋby theorem (2.13) and since ℳ⏊ is IF-invariant under 𝕋∗, 

therefore by above case (ℳ⏊)⏊ is IF-invariant under (𝕋∗)∗. 

But (ℳ⏊)⏊ = ℳ and (𝕋∗)∗ = 𝕋. 

Therefore, ℳ is IF-invariant under 𝕋. 

Definition 3.6: 

 Let ℳ be a closed subspace of an IFH-space and let 𝕋 ∈ 𝐼𝐹𝐵(ℋ). If both ℳ and ℳ⏊ are IF-invariant 

under 𝕋, we say that ℳ reduces 𝕋 (or 𝕋 is reduced by ℳ). 

Theorem 3.7: 

 A closed subspace ℳ of an IFH-space ℋ reduces an operator 𝕋 if and only if ℳ is IF-invariant under 

both  𝕋 and 𝕋∗. 

Proof: 

 Let us assume that ℳ reduces an operator 𝕋. 

By the definition of reducibility, ℳ and ℳ⏊ are IF-invariant under 𝕋. 

By theorem (3.5), if ℳ⏊ is IF-invariant under 𝕋, then (ℳ⏊)⏊ i.e. ℳ is IF-invariant under 𝕋∗. 

Thus, ℳ is IF-invariant under both  𝕋 and 𝕋∗. 

Conversely, suppose that ℳ is IF-invariant under both  𝕋 and 𝕋∗. 

Since ℳ is IF-invariant under 𝕋∗, ℳ⏊ is IF-invariant under (𝕋∗)∗. 

i.e. ℳ⏊ is IF-invariant under 𝕋. 

Therefore, both ℳ and ℳ⏊ are IF-invariant under 𝕋. 

Thus, ℳ reduces 𝕋. 

Definition 3.8: 

 Let (ℋ,ℱ𝜇 ,𝑣 , 𝒯) be an IFH-space, 𝕋 ∈ 𝐼𝐹𝐵(ℋ) and let 𝜆 be an eigenvalue of 𝕋. Then the set of all 

eigenvectors corresponding to 𝜆 together with 0 vector is called an eigenspace of 𝕋 corresponding to the 

eigenvalue 𝜆 and is denoted by ℳ𝜆 . 

Note3.9: 

(1) By the definition, an eigenvector cannot be a zero vector. Therefore, ℳ𝜆  necessarily contains some 

non-zero vectors. 

(2) From (1), a non-zero vector 𝑎 ∈ ℳ𝜆 iff𝕋𝑎 = 𝜆𝑎. Also 0 ∈ ℳ𝜆 , the vector 0 definitely satisfies the 

equation 𝕋𝑎 = 𝜆𝑎. 
Therefore, ℳ𝜆 =  𝑎 ∈ ℋ: 𝕋𝑎 = 𝜆𝑎 = {𝑎 ∈ ℋ:  𝕋 − 𝜆𝐼 𝑎 = 0 }. 

Thus, ℳ𝜆  is the Null-space of 𝕋 − 𝜆𝐼 on ℋ. Hence ℳ𝜆  is a subspace of ℋ. 

(3) Let 𝑎 ∈ ℋ. Since ℳ𝜆  is a subspace of ℋ and 𝜆 is a scalar, then 𝜆𝑎 ∈ ℳ𝜆 . 

Since 𝑎 ∈ ℳ𝜆  ⟹  𝕋𝑎 = 𝜆𝑎 ⟹  𝕋𝑎 ∈ ℳ𝜆 ⟹ ℳ𝜆  is IF-invariant under 𝕋. 

From (1), (2) and (3), ℳ𝜆  is non-zero subspace of ℋ invariant under 𝕋. 

Theorem 3.10: 

 If 𝕋 be an IFN-operator on n-dimensional IFH-space ℋ, then each eigenspace reduces 𝕋. 

Proof: 

 Let 𝑎𝑖 ∈ ℳ𝑖 , the eigenspace of 𝕋 and let 𝜆𝑖  be the corresponding eigenvalue. Then 𝕋𝑎𝑖 = 𝜆𝑖𝑎𝑖 . 
Since 𝕋 is an IFN-operator, then by theorem (3.3)𝜆𝑖  is the eigenvalue for 𝕋∗ (i.e. 𝕋∗𝑎𝑖 = 𝜆𝑖 𝑎𝑖). 

Since ℳ𝑖  is a subspace of ℋ ⟹ 𝜆𝑖 𝑎𝑖 ∈ ℳ𝑖 ⟹ 𝕋∗𝑎𝑖 ∈ ℳ𝑖 . 

Therefore, ℳ𝑖  is IF-invariant under 𝕋∗. 

But ℳ𝑖  is IF-invariant under 𝕋. 
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Thus, by theorem (3.5), ℳ𝑖  reduces 𝕋. 

Definition 3.11: Intuitionistic Fuzzy Hyponormal Operator (IFHN-operator) 

 Let (ℋ,ℱ𝜇 ,𝑣 , 𝒯) be an IFH-space with IP:  𝑎, 𝑏 = sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝑎, 𝑏, 𝑠 < 1    ∀ 𝑎, 𝑏 ∈ ℋ and let 

𝕋 ∈ 𝐼𝐹𝐵(ℋ). Then 𝕋is an intuitionistic fuzzy hyponormal (IFHN) operator on ℋ if 𝒫𝜇 ,𝑣 𝕋
∗𝑎, 𝑠 ≤

𝒫𝜇 ,𝑣 𝕋𝑎, 𝑠 , 𝑎 ∈ ℋ or equivalently 𝕋∗𝕋 − 𝕋𝕋∗ ≥ 0. 

Theorem 3.12: 

 Let (ℋ,ℱ𝜇 ,𝑣 , 𝒯) be an IFH-space with IP:  𝑎, 𝑏 = sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝑎, 𝑏, 𝑠 < 1   ∀ 𝑎, 𝑏 ∈ ℋ and let 

𝕋 ∈ 𝐼𝐹𝐵(ℋ) be an intuitionistic fuzzy hyponormal (IFHN) operator on ℋ. Then 𝒫𝜇 ,𝑣 (𝕋 − 𝑧𝐼)𝑎, 𝑠 ≥

𝒫𝜇 ,𝑣  𝕋
∗ − 𝑧 𝐼 𝑎, 𝑠 , 𝑎 ∈ ℋ, i.e. 𝕋 − 𝑧𝐼 is an IFHN-operator. 

Proof: 

 Given 𝕋 is an IFHN-operator on ℋ. 

Let 𝒫𝜇 ,𝑣
2  𝕋 − 𝑧𝐼 𝑎, 𝑠 =   𝕋 − 𝑧𝐼 𝑎,  𝕋 − 𝑧𝐼 𝑎  

  = sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣  𝕋 − 𝑧𝐼 𝑎,  𝕋 − 𝑧𝐼 𝑎, 𝑠 < 1   

  ≥ sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝑎,  𝕋 − 𝑧𝐼 ∗ 𝕋 − 𝑧𝐼 ∗𝑎, 𝑠 < 1    [since, by def. of IFHN-operator] 

  =   𝕋 − 𝑧𝐼 ∗𝑎,  𝕋 − 𝑧𝐼 ∗𝑎  

∴ 𝒫𝜇 ,𝑣
2  𝕋 − 𝑧𝐼 𝑎, 𝑠 ≥ 𝒫𝜇 ,𝑣

2  𝕋 − 𝑧𝐼 ∗𝑎, 𝑠  

⇒ 𝒫𝜇 ,𝑣 (𝕋 − 𝑧𝐼)𝑎, 𝑠 ≥ 𝒫𝜇 ,𝑣( 𝕋 − 𝑧𝐼 ∗𝑎, 𝑠) 

i.e. 𝒫𝜇 ,𝑣 (𝕋 − 𝑧𝐼)𝑎, 𝑠 ≥ 𝒫𝜇 ,𝑣( 𝕋 − 𝑧𝐼            𝑎, 𝑠) 

Thus, 𝒫𝜇 ,𝑣 (𝕋 − 𝑧𝐼)𝑎, 𝑠 ≥ 𝒫𝜇 ,𝑣  𝕋
∗ − 𝑧 𝐼 𝑎, 𝑠  

Theorem 3.13: 

 Let(ℋ,ℱ𝜇 ,𝑣 , 𝒯)be anIFH-space and let𝕋 ∈ 𝐼𝐹𝐵(ℋ)be an IFHN-operator on ℋ. Then 𝕋𝑎 = 𝜆𝑎  ⇒

𝕋∗𝑎 = 𝜆 𝑎. 

Proof: 

 Let 𝑎be an eigenvector of 𝕋 corresponding to the eigenvalue 𝜆. 

⇒ 𝕋𝑎 = 𝜆𝑎 

Now,  

sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝕋𝑎, 𝕋𝑎, 𝑠 < 1 = sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝑎, 𝕋∗𝕋𝑎, 𝑠 < 1   

   = sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝑎, 𝕋𝕋∗𝑎, 𝑠 < 1     [since, T is anIFN-operator] 

   = sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝕋
∗𝑎, 𝕋∗𝑎, 𝑠 < 1  

Since,𝕋 − 𝑧𝐼 is intuitionistic fuzzy hyponormal, 𝑎 ∈ ℋ. 

sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣  𝕋 − 𝜆𝐼 𝑎,  𝕋 − 𝜆𝐼 𝑎, 𝑠 < 1  ≥ sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣  𝕋 − 𝜆𝐼 ∗𝑎,  𝕋 − 𝜆𝐼 ∗𝑎, 𝑠 < 1   

Since 𝕋𝑎 = 𝜆𝑎, which implies that 

𝕋𝑎 = 𝜆𝐼𝑎  ⇒ 𝕋𝑎 − 𝜆𝐼𝑎 = 0  ⇒  𝕋 − 𝜆𝐼 𝑎 = 0 

∴ 𝕋 − 𝜆𝐼 = 0. 

Then sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣  𝕋 − 𝜆𝐼 𝑎,  𝕋 − 𝜆𝐼 𝑎, 𝑠 < 1 = 0,  ∀ 𝑎 ∈ ℋ  … (3.1) 

⇒ sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣  𝕋 − 𝜆𝐼 ∗𝑎,  𝕋 − 𝜆𝐼 ∗𝑎, 𝑠 < 1  ≤ 0,   ∀ 𝑎 ∈ ℋ 

From (3.1),  𝕋 − 𝜆𝐼 ∗𝑎 = 0. Then for each 𝑎 ∈ ℋ, 

 𝕋 − 𝜆𝐼 ∗𝑎 = 0  ⇒   𝕋∗ − 𝜆 𝐼 𝑎 = 0  ⇒  𝕋∗𝑎 − 𝜆 𝐼𝑎 = 0  ⇒  𝕋∗𝑎 = 𝜆 𝑎 

Therefore, 𝑎 is an eigenvector of 𝕋∗ corresponding to eigenvalue 𝜆 . 
Theorem (3.14): 

 𝕋 ∈ 𝐼𝐹𝐵(ℋ) is an IFHN-operator iff𝒫𝜇 ,𝑣 𝕋
∗𝑎, 𝑠 ≤ 𝒫𝜇 ,𝑣 𝕋𝑎, 𝑠 , for all 𝑎 ∈ ℋ. 

Proof: 

 Assume 𝕋 is an IFHN-operator. Then by definition, 𝕋∗𝕋 − 𝕋𝕋∗ ≥ 0. 

which implies that  𝕋∗𝕋 ≥ 𝕋𝕋∗. 

i.e. 𝕋𝕋∗ ≤ 𝕋∗𝕋 

Let 𝒫𝜇 ,𝑣 𝕋
∗𝑎, 𝑠 ≤ 𝒫𝜇 ,𝑣 𝕋 𝑎, 𝑠  

⇔ 𝒫𝜇 ,𝑣
2 𝕋∗𝑎, 𝑠 ≤ 𝒫𝜇 ,𝑣

2 𝕋 𝑎, 𝑠  

⇔  𝕋∗𝑎, 𝕋∗𝑎 ≤  𝕋𝑎, 𝕋𝑎  

⇔ sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝕋
∗𝑎, 𝕋∗𝑎, 𝑠 < 1 ≤ sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝕋𝑎, 𝕋𝑎, 𝑠 < 1  

⇔ sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝕋𝕋
∗𝑎, 𝑎, 𝑠 < 1 ≤ sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝕋

∗𝕋𝑎, 𝑎, 𝑠 < 1  

⇔  𝕋𝕋∗𝑎, 𝑎 ≤  𝕋∗𝕋𝑎, 𝑎  
⇔  (𝕋𝕋∗ − 𝕋∗𝕋)𝑎, 𝑎 ≤ 0 

⇔ 𝕋𝕋∗ − 𝕋∗𝕋 ≤ 0 

⇔ 𝕋𝕋∗ ≤ 𝕋∗𝕋 
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Theorem (3.15): 

 Let 𝕋 ∈ 𝐼𝐹𝐵(ℋ) be a fuzzy hyponormal with 𝕋𝑎1 = 𝜆1𝑎1, 𝕋𝑎2 = 𝜆2𝑎2 and 𝜆1 ≠ 𝜆2 then  𝑎1, 𝑎2 = 0. 

Proof: 

 Since 𝕋 be an intuitionistic fuzzy hyponormal operator with 𝕋𝑎1 = 𝜆1𝑎1, 𝕋𝑎2 = 𝜆2𝑎2 and 𝜆1 ≠ 𝜆2 

then by theorem (3.3) 𝕋∗𝑎1 = 𝜆1
 𝑎1 and 𝕋∗𝑎2 = 𝜆2

   𝑎2. 

Let 𝜆1 𝑎1 , 𝑎2 =  𝜆1𝑎1, 𝑎2  

= sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝜆1𝑎1 , 𝑎2 , 𝑠 < 1  

= sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝕋𝑎1 , 𝑎2 , 𝑠 < 1  

= sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝑎1 , 𝕋∗𝑎2 , 𝑠 < 1  

= sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝑎1 , 𝜆2
   𝑎2 , 𝑠 < 1  

= sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝜆2𝑎1 , 𝑎2 , 𝑠 < 1  

=  𝜆2𝑎1 , 𝑎2  
= 𝜆2 𝑎1 , 𝑎2  

Hence, if 𝜆1 ≠ 𝜆2 then  𝑎1 , 𝑎2 = 0. i.e. 𝑎1 ⊥ 𝑎2. 

Theorem (3.16): 

 Let (ℋ,ℱ𝜇 ,𝑣 , 𝒯) be an IFH-space with IP:  𝑎, 𝑏 = sup 𝑠 ∈ ℝ:ℱ𝜇 ,𝑣 𝑎, 𝑏, 𝑠 < 1   ∀ 𝑎, 𝑏 ∈ ℋ and let 

𝕋 ∈ 𝐼𝐹𝐵(ℋ) be an IFHN-operator on ℋ with ℳ ⊂ ℋIF-invariant under 𝕋 also let 𝕋ℳ  be intuitionistic fuzzy 

hyponormal. Then ℳ reduces 𝕋. 

Proof: 

 Let 𝑎 ∈ ℳ, the eigenspace of 𝕋and let the corresponding eigenvalue of 𝕋 be 𝜆. 

So that 𝕋𝑎 = 𝜆𝑎. Since 𝕋 is an IFN-operator then by theorem (3.3), 𝕋∗𝑎 = 𝜆 𝑎, 𝑎 ∈ ℋ. 

Since ℳ is a subspace, 𝜆 𝑎 ∈ ℳ ⇒ 𝕋∗𝑎 ∈ ℳ. 

⇒ℳ is IF-invariant under 𝕋∗, but ℳ is IF-invariant under 𝕋. 

Hence, by theorem(3.7), ℳ reduces 𝕋. 

Corollary 3.17: 

Let 𝕋 be an IFHN-operator on ℋ and ℳ = {𝑎 ∈ ℋ: 𝕋𝑎 = 𝜆𝑎} then ℳ reduces 𝕋 and 𝕋ℳ  is 

intuitionistic fuzzy hyponormal. 

Corollary 3.18: 

Let 𝕋 be an IFHN-operator on ℋ and let ℳ ⊂ ℋ, IF-invariant under 𝕋. Then 𝕋ℳ  is intuitionistic 

fuzzy hyponormal. 

 

IV. CONCLUSION 
Intuitionistic Fuzzy Hyponormal operator (IFHN- operator) on IFH-space is introduced which is new 

idea. And also discuss classic form of theorems play the role a prototype in our discussion of this paper. These 

relations are very new and helpful for the further study of functional analysis on intuitionistic fuzzy 

concept.Some properties of IFHN- operator have been investigated which is useful for the further research in 

applications of functional analysis in fuzzy and intuitionistic fuzzy concept. 
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