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Abstract: ECG is an important tool to assist in heart diseases diagnosis. The works found in the literature have the 

common goal of discriminating between binary study groups, one pathological and one control, even when ECG 

records from patients diagnosed with several pathologies are available in the databases. This work proposes a method 

to detect ECG morphological features and to analyze the capacity of this ECG features to discriminate 28 pairs of 

study groups, combining 7 pathological groups and 1 control group, presented in the PTB Diagnostic ECG Database. 

For each pair, it was achieved an accuracy between 77.4% and 100%, with an average of 94%, using several pattern 

recognition classifiers. 
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I. INTRODUCTION 
The electrocardiogram (ECG) is the recording of the rhythmic alterations of the heart electrical activity and 

represents the cardiac cycle [1]. A typical ECG is usually recorded by means of a 12-lead system (i, ii, iii, aVR, aVL, 

aVF, V1, V2, V3, V4, V5, V6). The amplitude and direction of the current flow in the heart are detected by the 

electrodes, resulting in different ECG signals according to the leads axis. An ECG signal of a healthy subject is 

cyclically formed by a P wave, a QRS complex and a T wave [1], which represent the atria depolarization, the 

ventricular depolarization and the ventricular repolarization, respectively [2]. Other important time intervals and signal 

segments are also described in Figure no 1. The time between the beginnings of the P wave and the QRS complex is 

the PQ interval, which is often called PR interval because the Q wave is usually very small [3]. During the PR interval, 

which lasts approximately 0.16 seconds, the auricle contracts and begins to relax [4]. The QT interval extends from 

the beginning of the QRS complex to the end of the T wave, lasting approximately 0.36 seconds, and represents the 

approximate duration required for the ventricles to contract and relax [5]. 

 

 
Figure no 1: ECG wave and its morphological features. 

 

Any minor change in the normal pattern of an ECG signal can be interpreted as malfunction of the heart [6,7]. 

Thus, autonomous and accurate discrimination of cardiac pathologies through ECG is an important tool to assist in 

the diagnosis of these diseases, especially considering that the detection of cardiac disorder is exhausting task for 

cardiologists [8]. During the last years, several works have proposed methods to detect ECG features (morphological 
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or not) and then to diagnose cardiac pathologies. These works can be classified according to: pathologies diagnosed, 

ECG database used, number of ECG leads used, ECG analysis method and classification method. Considering only 

those that use public databases, some works found in the literature and their results are summarized in the Table no 1. 

The great majority of these methods aimed to discriminate Myocardial Infarction (MI) from healthy controls, which 

can be explained by the greater number of ECG records from patients diagnosed with this disease in the public 

databases, mainly in the PTB Diagnostic ECG Database. Few works aimed to discriminate Dysrhythmia or 

Cardiomyopathy from healthy controls. However, all works have the common goal of discriminating between 2 study 

groups, one pathological group and one control group, even when ECG records from patients diagnosed with several 

pathologies are available in the databases. This work proposes to analyze the capacity of several ECG parameters to 

discriminate 28 pairs of study groups, combining 7 pathological groups and 1 control group, presented in the PTB 

Diagnostic ECG Database. 

 

Table no 1: List of works found in the literature. 

References Pathologies 
Number of 

Leads 
Method and Classification Accuracies 

[9] MI 12 leads 
ST segment elevation and 

threshold classification 
92.5% 

[10] MI 3 leads 

Q peak depth and ST segment 

elevation. Classification by a 

simple adaptive threshold 

90.56% 

[11] Dysrhythmia 12 leads 

Template construction from CWT 

features using a morphological 

consistency classifier 

93.0% 

[12] Cardiomyopathy 12 leads 

PR, RR, QT and QRS intervals 

analysis. Classification through 

BPNN 

95.2% 

 

II. MATERIAL AND METHODS 
ECG Database 

This work used the PTB Diagnostic ECG Database available in [13, 14]. The database contains 549 ECG 

records from 268 subjects, including healthy subjects. Table no 2 summarizes de database. Each ECG record contains 

all the 12-lead system signals with a sampling rate of 1000 Hz, but this work used only the Lead I signals. 

 

Table no 2: Diagnostic classes and number of records found in PTB database. 

Pathologies 
Number of 

patients 

MI 148 

Cardiomyopathy 18 

Bundle Branch Block 15 

Dysrhythmia 14 

Myocardial hypertrophy 7 

Valvular heart disease 6 

Myocarditis 4 

Miscellaneous 4 

Healthy controls 52 

 

Peak detection 

The method detects the R, S, Q, P and T peaks of the ECG signal, in that order, as follows: 

 

Peak R: A Wavelet Transform (WT) translation analysis, using the wavelet ‘symlet 4’(orange in Figure no 2), is 

applied in order to calculate the cross-correlation between the signal and the WT. The R peaks are the maxima of each 

correlation over the channel. To find all the R peaks in the ECG a 70% signal amplitude threshold (black line in Figure 
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no 2) of the WT's maximum was used to make sure that just the most prominent correlation peak in each heart cycle 

is detected. 

 

 
Figure no 2: ECG R peak detection. 

 

S peak: The S peak was identified as being the first negative minimum wave after the first zero of WT ‘symlet 

4’translation after the R peak (Figure no 3 a)) [15]. 

 

Q peak: Contrary to S peak, the Q peak was identified as being the negative minimum wave right before the first zero 

before of WT ‘symlet 4’translation before the R peak (Figure no 3b)) [15]. 

 

P peak: WT translation was performed using WT ‘symlet 4’. The WT was then amplified fifth rooting it. The first 

three zeros of the WT wave before each R peak were calculated. The last two zeros were used as windows to compute 

the maximum of the ECG signal, corresponding to the P peak (Figure 3 c)). 

 

 
Figure no 3: ECG a) S peak, b) Q peak, c) P peak and d) T peak detection. 

 

T peak: For the T wave analysis the ECG signal was set to zero before and after two consecutive R peaks, knowing 

T waves are comprehended in this interval. To verify if the T wave was in an inverting or non-inverting state a 
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3rddegree polynomial approximation was applied to each SP interval. Computing the inflection points and applying 

again a 2nd degree polynomial approximation from the beginning of the SP interval to the first inflection point, the 

coefficient signal dictates if positive the T wave is inverted and if negative, non-inverted (Figure no 4). If non-inverted 

the WT maintains the same and if inverted the WT was inverted. The T peaks are the maxima of each correlation over 

the channel. To find the T peak in each RR window of the ECG a 99% signal amplitude threshold was used to make 

sure that just the most prominent correlation peak is detected. If the maximum of WT being offset from T peak, the 

first zero, before and after the WT maximum, were used as windows to compute the maximum of the ECG signal, 

corresponding to the T peak (Figure no 3 d)). 

 

 
 

Figure no 4: T wave state (inverted/non-inverted) detection. 

 

After all peak’s identification, it is easy to find the segments that represent the QRS complex, PR interval, 

PR segment, QT interval and ST segment were followed identified.  

 

ECG Features Analyzed 

Several features of each Lead I ECG signal are calculated in order to analyze their discrimination capacities. 

The features are summarized in the Table no 3. 

 
Table no 3: List of analyzed features and their respective index. 

Index Features Index Features Index Features 

1 Energy QRS complex 38 
WT ‘sym8’ det. level 

3 energy QT interval 
75 Time P-T 

2 Power QRS complex 39 
WT ‘sym8’ det. level 

2 energy QT interval 
76 Time Q-R 

3 Entropy QRS complex 40 
WT ‘sym8’ det. level 

1 energy QT interval 
77 Time Q-S 

4 
Shannon Entropy QRS 

complex 
41 Duration P wave 78 Time Q-T 

5 
Log Energy Entropy 

QRS complex 
42 Energy P wave 79 Time R-S 

6 
WT ‘sym4’ det. level 4 

energy QRS complex 
43 Power P wave 80 Time R-T 

7 
WT ‘sym4’ det. level 3 

energy QRS complex 
44 Entropy P wave 81 Time S-T 

8 
WT ‘sym4’ det. level 2 

energy QRS complex 
45 

Shannon Entropy P 

wave 
82 

Amplitude P 

peak 

9 
WT ‘sym4’ det. level 1 

energy QRS complex 
46 

Log Energy Entropy P 

wave 
83 

Amplitude Q 

peak 

10 
WT ‘sym8’ det. level 4 

energy QRS complex 
47 

WT ‘sym4’ det. level 

4 energy P wave 
84 

Amplitude R 

peak 

11 
WT ‘sym8’ det. level 3 

energy QRS complex 
48 

WT ‘sym4’ det. level 

3 energy P wave 
85 

Amplitude S 

peak 
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12 
WT ‘sym8’ det. level 2 

energy QRS complex 
49 

WT ‘sym4’ det. level 

2 energy P wave 
86 

Amplitude T 

peak 

13 
WT ‘sym8’ det. level 1 

energy QRS complex 
50 

WT ‘sym4’ det. level 

1 energy P wave 
87 

Amplitude 

difference P-Q 

14 Energy PR interval 51 
WT ‘sym8’ det. level 

4 energy P wave 
88 

Amplitude 

difference P-R 

15 Power PR interval 52 
WT ‘sym8’ det. level 

3 energy P wave 
89 

Amplitude 

difference P-S 

16 Entropy PR interval 53 
WT ‘sym8’ det. level 

2 energy P wave 
90 

Amplitude 

difference P-T 

17 
Shannon Entropy PR 

interval 
54 

WT ‘sym8’ det. level 

1 energy P wave 
91 

Amplitude 

difference Q-R 

18 
Log Energy Entropy PR 

interval 
55 Duration T wave 92 

Amplitude 

difference Q-S 

19 
WT ‘sym4’ det. level 4 

energy PR interval 
56 Energy T wave 93 

Amplitude 

difference Q-T 

20 
WT ‘sym4’ det. level 3 

energy PR interval 

57 

58 
Power T wave 94 

Amplitude 

difference R-S 

21 
WT ‘sym4’ det. level 2 

energy PR interval 
59 Entropy T wave 95 

Amplitude 

difference R-T 

22 
WT ‘sym4’ det. level 1 

energy PR interval 
60 

Shannon Entropy T 

wave 
96 

Amplitude 

difference S-T 

23 
WT ‘sym8’ det. level 4 

energy PR interval 
61 

Log Energy Entropy T 

wave 
98 Energy ECG 

24 
WT ‘sym8’ det. level 3 

energy PR interval 
62 

WT ‘sym4’ det. level 

4 energy T wave 
99 Power ECG 

25 
WT ‘sym8’ det. level 2 

energy PR interval 
63 

WT ‘sym4’ det. level 

3 energy T wave 
100 Entropy ECG 

26 
WT ‘sym8’ det. level 1 

energy PR interval 
64 

WT ‘sym4’ det. level 

2 energy T wave 
101 

Shannon 

Entropy ECG 

27 Energy QT interval 65 
WT ‘sym4’ det. level 

1 energy T wave 
102 

Log Energy 

Entropy ECG 

28 Power QT interval 66 
WT ‘sym8’ det. level 

4 energy T wave 
103 

WT ‘sym4’ det. 

level 4 energy 

ECG 

29 Entropy QT interval 67 
WT ‘sym8’ det. level 

3 energy T wave 
104 

WT ‘sym4’ det. 

level 3 energy 

ECG 

30 
Shannon Entropy QT 

interval 
68 

WT ‘sym8’ det. level 

2 energy T wave 
105 

WT ‘sym4’ det. 

level 2 energy 

ECG 

31 
Log Energy Entropy 

QRS complex 
69 

WT ‘sym8’ det. level 

1 energy T wave 
106 

WT ‘sym4’ det. 

level 1 energy 

ECG 

32 
WT ‘sym4’ det. level 4 

energy QT interval 
70 Duration PR segment 107 

WT ‘sym8’ det. 

level 4 energy 

ECG 

34 
WT ‘sym4’ det. level 3 

energy QT interval 
71 Duration ST segment 108 

WT ‘sym8’ det. 

level 3 energy 

ECG 

35 
WT ‘sym4’ det. level 2 

energy QT interval 
72 Time P-Q 109 

WT ‘sym8’ det. 

level 2 energy 

ECG 
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36 
WT ‘sym4’ det. level 1 

energy QT interval 
73 Time P-R 110 

WT ‘sym8’ det. 

level 1 energy 

ECG 

37 
WT ‘sym8’ det. level 4 

energy QT interval 
74 Time P-S  

 

Classification 

A sequential feature selection algorithm with deviance of the fit (generalization of the residual sum of 

squares) criterion were applied for feature selection from matrices with 110 features per X subjects (X is the number 

of the patients involved in each classification pair). The 110 features resulted from the mean features values extracted 

from each ECG cycle per subject (I lead), as described in Table no 3. A 5-fold cross validation was used for training 

and testing several different machine learning classifiers presented in Table no 4. The classifications were performed 

for 28 pairs of the study groups between 7 pathological groups and 1 control group.  

 

Table no 4: List of used classifiers. 

Decision Trees 
Support Vector 

Machines 

Nearest 

Neighbor 

Classifiers 

Ensemble 

Classifiers 

Discriminant 

Analysis 

Logistic 

Regression 

Classifiers 

Medium Tree 

Coarse Tree 

Linear SVM 

Quadratic SVM 

Cubic SVM 

Fine Gaussian 

SVM 

Medium 

Gaussian SVM 

Coarse Gaussian 

SVM 

Fine KNN 

Medium KNN 

Coarse KNN 

Cosine KNN 

Cubic KNN 

Weighted KNN 

Boosted Trees 

Bagged Trees 

Subspace 

Discriminant 

Subspace KNN 

RUSBoosted 

Trees 

Linear 

Discriminant 

Quadratic 

Discriminant 

Logistic 

Regression 

 

III. RESULTS 
As previously said, the classifications were performed for 28 pairs of the study groups combining 7 

pathological groups and 1 control group. The results shown in Figure are the best accuracies achieved from the 

trained/tested classifiers.  

As can be observed from Figure no 5, the maximum accuracy classification was achieved for the pairs 

Healthy controls vs. Myocarditis and Cardiomyopathy; Bundle branch block vs. Myocarditis; Valvular heart disease 

vs. Myocarditis and Myocardial hypertrophy; Myocarditis vs. MI, Myocardial hypertrophy and Dysrhythmia; 

Myocardial hypertrophy vs. Cardiomyopathy and Dysrhythmia; with an outstanding 100% precision rate. Moreover, 

it can be noticed that the best features were capable of discriminating Healthy controls from any other heart disease 

with an accuracy higher than 95% for the exception of Bundle branch block and MI where the reached accuracies 

were 89.6% and 87.4%, respectively. For the pairs Healthy controls vs. Dysrhythmia the classifiers achieved an 

accuracy of 95.5%. The distinguish accuracy between Healthy controls against MI is slightly under the results of those 

in the state-of-art (Table no 1) and can be explained by the fact that the methods available in the literature use multiple 

leads and, as previously mentioned, not just one lead as this work. 

Using only Lead I analysis, the classifiers were able to achieve an accuracy between 77.4% and 100%, with 

an average of 94%, for the 28 pairs of study groups showing Lead I has good capacity for heart pathologies 

discrimination, however, the low number of records for some pathologies should be taken in consideration. 
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Figure no 5: Pathologies discrimination accuracies. 

 

IV. CONCLUSION 
This work has analyzed the capacity of several ECG features to discriminate 28 pairs of study groups, 

combining 7 pathological groups and 1 control group, presented in the PTB Diagnostic ECG Database. Using only 

Lead I, the classifiers were able to achieve an accuracy between 77.4% and 100%, with an average of 94%, for the 28 

pairs of study groups. These results become even more relevant considering that only 3 of these pairs are commonly 

analyzed in the literature: MI, Dysrhythmia and Cardiomyopathy. This study also proves that Lead I has good capacity 

for heart pathologies discrimination, however the low number of records for some pathologies should be taken 

inconsideration. 
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