
Shubham Tripathi¹, Dr. A. K. Jain²

¹(M.E. Scholar, NITTTR, Bhopal)
²(Professor & Head, Department of Civil & Environment Engineering NITTTR, Bhopal)
Received 21 September 2019; Accepted 10 October 2019

Abstract: The structures generally get collapse because of the disappointment of one or a couple of basic parts which at that point advances over the progressive of different segments. This procedure is alluded as Progressive Collapse of the structure. Nearby harm that starts dynamic breakdown is called starting harm. So as to contemplate the breakdown in diagnostic manner, stacking example or limit conditions are required to be changed so other auxiliary components inside the structure are stacked past their ability. This prompts improvement of elective burden ways to start the redistribution of burdens. A typical model of a 12 storey structure is made on ETABS Software and investigation of fortified cement encircled structure under basic section evacuation has been conveyed utilizing the direct and non-straight static examination techniques according to the rules gave in GSA (2003) and FEMA: 356 rules separately contemplating the arrangements of IS1893:2002 codes to recreate dynamic breakdown issues. The outcomes are then looked at for the parameters, for example, Demand limit proportion and Robustness marker were checked for the acknowledgment criteria gave in GSA 2003.

Keywords: Progressive Collapse, GSA, Demand capacity ratio, Robustness indicator, ETABS.

I. INTRODUCTION

The R.C.C. building consists of elements such as column, beams, Slab, Foundation etc; these elements are also referred to as load bearing elements of the structure. Though there are mainly two types of load that acts on structure and are dead (DL) and live (LL) loads. The dead load consists of the weight of permanent structure elements such as column; beam whereas the live load consists of weight of moving people, furniture etc and the wind load and seismic load also act on the structure. When the interior load-bearing structural element fails due to any number of means such as blast activity or vehicular accident which results in the failure of a structure or component to maintain its structural integrity this phenomenon is called collapse phenomena. This situation may be initiated by an earthquake, interior or exterior explosions and construction activities. The classification of the causes of the building collapse is specified under general headings given below:

1. Faulty Construction
2. Unexpected Failure Modes
3. Extraordinary Loads
4. Foundation Failure
5. Column and beam failure

The worldwide problem of ensuring the stability of structures of high-rise buildings against progressive collapse as a result of fire and blasts is becoming more urgent because, leads to very serious consequences. Wear and tear of fixed assets of the country, increasing the rate and density of construction in urban areas, an increase in recent years, the number of terrorist acts (bombings, arson, etc.)

1.1 Progressive Collapse

The expression “Progressive Collapse” can be just characterized as a definitive disappointment or proportionately enormous disappointment of a bit of a structure because of the spread of a neighborhood disappointment from component to component all through the structure. Dynamic breakdown happens when moderately neighborhood basic harm, causes a chain response of structure components disappointments, unbalanced to the underlying harm, causing in halfway or full breakdown of the structure. Nearby harm that starts dynamic breakdown of structure is called starting harm. When all is said in done, dynamic breakdown happens in a brief timeframe right away. It is additionally conceivable that it very well may be described by the loss of burden conveying limit of a moderately little segment of a structure because of a normal burden which, thusly, starts a fall of disappointments influencing a primary segment of the structure. A dynamic breakdown is
commanding occasion as it involves the vibrations of auxiliary segments and results in powerful interior powers. These inside powers could be, for example, inactivity powers and so on, whose force isn't consumed by the structure. Dynamic breakdown is a characteristic non-direct occasion, in which auxiliary segments are worried past their versatile point of confinement to happen the failure. Progressive breakdown is a reliable annihilation of the bearing structures of the (structure) because of the underlying nearby harm to the individual transporters of basic segments and prompting the breakdown of the whole building or significant part. The potential irregular loads that can cause the dynamic breakdown are arranged that way
a. Pressure Loads
 • Internal gas explosions
 • Blast
 • Wind over pressure
 • Extreme values of environmental loads
b. Impact Loads
 • Aircraft impact
 • Vehicular collision
 • Earthquake Overload due to occupant overuse Storage of hazardous materials

II. METHODOLOGY

In this work, the analysis based on linear static method is used to investigate Progressive Collapse Assessment of RCC Structure under Instantaneous Removal of Columns and its Modeling Using ETABS Software as per IS-standards. In order to study the effect seismic force on Progressive Collapse Assessment zone II of India is considered.

BUILDING MODEL

Cases of a Building Models which has been considering the study are given below-

<table>
<thead>
<tr>
<th>Software used</th>
<th>Configuration of Building</th>
<th>Model Dimensions</th>
<th>Storey</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETABS</td>
<td>Rectangular</td>
<td>31.5m x 22.5m</td>
<td>12</td>
<td>Seismic forces of Zone II as per IS: 1893:2002.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Storey Height</td>
<td>3 m</td>
</tr>
<tr>
<td>Base Storey Height</td>
<td>3.0 m</td>
</tr>
<tr>
<td>No. of Bays along X-Direction</td>
<td>7</td>
</tr>
<tr>
<td>No. of Bays along Y-Direction</td>
<td>5</td>
</tr>
<tr>
<td>Bay Length along X-Direction</td>
<td>4.5 m</td>
</tr>
<tr>
<td>Bay Length along Y-Direction</td>
<td>4.5 m</td>
</tr>
<tr>
<td>Concrete Grade</td>
<td>M-30</td>
</tr>
<tr>
<td>Density of R.C.C.</td>
<td>25 KN/m3</td>
</tr>
<tr>
<td>Density of Masonry</td>
<td>20 KN/m3</td>
</tr>
<tr>
<td>Columns (perimeter)</td>
<td>500 mm x 500 mm</td>
</tr>
<tr>
<td>Columns (interior)</td>
<td>600 mm x 600 mm</td>
</tr>
<tr>
<td>Beams</td>
<td>250 mm x 550 mm</td>
</tr>
<tr>
<td>Slab Thickness</td>
<td>150 mm</td>
</tr>
<tr>
<td>Bottom Support Conditions</td>
<td>Fixed</td>
</tr>
<tr>
<td>Live Load-Roof</td>
<td>1 KN/m2</td>
</tr>
<tr>
<td>Rest of the structure</td>
<td>2 KN/m2</td>
</tr>
<tr>
<td>Soil Conditions</td>
<td>Type 2 Soil (medium)</td>
</tr>
<tr>
<td>Damping Ratio</td>
<td>5%, as per IS-1893: 2002 (Part-1)</td>
</tr>
<tr>
<td>Poisson Ratio</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Progressive Collapse Assessment of RCC Structure under Instantaneous Removal of Columns

For the study, G+11 storey building is considered. The building has 7 bays in X-direction and 5 bays in Y-direction with the plan dimension of 31.5 m x22.5 m and story height of 3 m in typical story and 3 m in base storey. To minimize torsion response under lateral force, building is kept symmetric in plan. The shape of the column in plan is kept square and size of the column is kept constant through the height of structure.

<table>
<thead>
<tr>
<th>Response Reduction Factor</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Importance Factor</td>
<td>1</td>
</tr>
<tr>
<td>Zone Factor</td>
<td>As per IS1893-2002 (Part 1) for different Seismic Zones</td>
</tr>
</tbody>
</table>

For the study, G+11 storey building is considered. The building has 7 bays in X-direction and 5 bays in Y-direction with the plan dimension of 31.5 m x22.5 m and story height of 3 m in typical story and 3 m in base storey. To minimize torsion response under lateral force, building is kept symmetric in plan. The shape of the column in plan is kept square and size of the column is kept constant through the height of structure.

Figure 1: General view of building on ETABS

The building consider in the study is to be located in seismic Zone II, and intended for Commercial use (Hotel). Building is founded medium strength soil. The columns at base are assumed to be provided with isolated footing. Response reduction factor for the special moment resting frame without shear wall and frame with shear wall has taken as 4 (Ductile detailing is assumed). The finish load on the floor is taken as 1.5 KN/m². Live load on the floor is taken as 3.0 KN/m². In seismic weight calculation, 25% of the floor live loads are considered in the analysis.

III. RESULTS AND DISCUSSIONS

A multistory hotel building of G+11 configurations is taken in zone II and progressive collapse assessment is performed using following two cases of sudden column removal –

(i) Column removal due to accident by any high speed vehicle- in this case outer column of ground floor is destroyed and suddenly removed.

(ii) Column removal due to LPG cylinder explosion – in this case the interior column of intermediate or ground floor is destroyed and suddenly removed.

3.1 Identification of critical columns for removal:
The removal of critical columns is governed by GSA (general service administration) shown as following

3.1.1 The GSA (2003) Guidelines Recommended Missing Column Scenario:
The potential for progressive collapse is evaluating using linear static analysis and nonlinear static analysis in four damage analysis cases. These four damaged column cases are shown in the fig. below:
Progressive Collapse Assessment of RCC Structure under Instantaneous Removal of Columns

The loss of an outside segment situated close to the center of the short side (C1).
The loss of an outside section situated close to the center of the long side (C2).
The passing of a corner section (C3).

3.2 Determination of DCR (demand capacity ratio) values for the beams neighboring to removed columns:

![DCR VS STOREY for flexure](image)

Figure 3: DCR values for Beams in flexure near to critical column C 41 of GF
Figure 4: DCR values for Beams in flexure near to critical column C 31 of GF

<table>
<thead>
<tr>
<th>Storey</th>
<th>DCR-B 79</th>
<th>DCR-B 78</th>
<th>DCR-B 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.4</td>
<td>4.38</td>
<td>3.7</td>
</tr>
<tr>
<td>2</td>
<td>3.47</td>
<td>3.54</td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td>3.16</td>
<td>3.16</td>
<td>2.54</td>
</tr>
<tr>
<td>4</td>
<td>3.11</td>
<td>2.87</td>
<td>2.24</td>
</tr>
<tr>
<td>5</td>
<td>2.75</td>
<td>2.72</td>
<td>2.1</td>
</tr>
<tr>
<td>6</td>
<td>2.62</td>
<td>2.62</td>
<td>2.05</td>
</tr>
<tr>
<td>7</td>
<td>2.49</td>
<td>2.49</td>
<td>2.01</td>
</tr>
<tr>
<td>8</td>
<td>2.41</td>
<td>2.28</td>
<td>1.94</td>
</tr>
<tr>
<td>9</td>
<td>2.35</td>
<td>2.18</td>
<td>1.97</td>
</tr>
<tr>
<td>10</td>
<td>2.35</td>
<td>2.15</td>
<td>2.06</td>
</tr>
<tr>
<td>11</td>
<td>2.3</td>
<td>2.1</td>
<td>2.5</td>
</tr>
<tr>
<td>12</td>
<td>3.48</td>
<td>3.2</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Figure 5: DCR values for Beams in flexure near to critical column C 39 of GF

<table>
<thead>
<tr>
<th>Storey</th>
<th>DCR-B 62</th>
<th>DCR-B 4</th>
<th>DCR-B 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.4</td>
<td>4.18</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3.47</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>3.16</td>
<td>3.25</td>
<td>3.25</td>
</tr>
<tr>
<td>4</td>
<td>3.11</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>5</td>
<td>2.75</td>
<td>2.9</td>
<td>3.05</td>
</tr>
<tr>
<td>6</td>
<td>2.62</td>
<td>2.85</td>
<td>3.01</td>
</tr>
<tr>
<td>7</td>
<td>2.49</td>
<td>2.65</td>
<td>2.94</td>
</tr>
<tr>
<td>8</td>
<td>2.41</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>9</td>
<td>2.8</td>
<td>2.18</td>
<td>2.06</td>
</tr>
<tr>
<td>10</td>
<td>2.95</td>
<td>2.15</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>3.1</td>
<td>2.1</td>
<td>3.15</td>
</tr>
<tr>
<td>12</td>
<td>3.48</td>
<td>3.5</td>
<td>3.15</td>
</tr>
</tbody>
</table>
Progressive Collapse Assessment of RCC Structure under Instantaneous Removal of Columns

Figure 6: DCR values for Beams in flexure near to critical column C 12 of GF

![DCR VS STOREY for flexure](image)

Figure 7: DCR values for Beams in flexure near to critical column C 41 of 7th floor

![DCR VS STOREY for flexure](image)
Figure 8: DCR values for Beams in flexure near to critical column C 31 of 7th floor

Figure 9: DCR values for Beams in flexure near to critical column C 39 of 7th floor
Progressive Collapse Assessment of RCC Structure under Instantaneous Removal of Columns

3.3 Determination of PMM (column forces) values for the columns neighboring to removed columns:

Table 3: Column forces for the case of removal of critical column C-41

<table>
<thead>
<tr>
<th>Building parameters related to C-40</th>
<th>Value in Damaged condition</th>
<th>Value in Intact condition</th>
<th>Increment in Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial load (kN)</td>
<td>4279.35</td>
<td>3201.26</td>
<td>33.60%</td>
</tr>
<tr>
<td>Bending moment (kN-m)</td>
<td>101.10</td>
<td>89.02</td>
<td>13.56%</td>
</tr>
<tr>
<td>Shear force (kN)</td>
<td>67.97</td>
<td>48.65</td>
<td>39.57%</td>
</tr>
</tbody>
</table>

Table 4: Column forces for the case of removal of critical column C-31

<table>
<thead>
<tr>
<th>Building parameters related to C-30</th>
<th>Value in Damaged condition</th>
<th>Value in Intact condition</th>
<th>Increment in Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial load (kN)</td>
<td>4259.94</td>
<td>3295.50</td>
<td>31.66%</td>
</tr>
<tr>
<td>Bending moment (kN-m)</td>
<td>192.84</td>
<td>114.95</td>
<td>67.75%</td>
</tr>
<tr>
<td>Shear force (kN)</td>
<td>46.19</td>
<td>40.15</td>
<td>15.04%</td>
</tr>
</tbody>
</table>

Table 5: Column forces for the case of removal of critical column C-39.

<table>
<thead>
<tr>
<th>Building parameters related to C-38</th>
<th>Value in Damaged condition</th>
<th>Value in Intact condition</th>
<th>Increment in Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial load (kN)</td>
<td>4277.61</td>
<td>3295.50</td>
<td>29.80%</td>
</tr>
<tr>
<td>Bending moment (kN-m)</td>
<td>197.83</td>
<td>98.48</td>
<td>100.08%</td>
</tr>
<tr>
<td>Shear force (kN)</td>
<td>91.53</td>
<td>38.72</td>
<td>136.38%</td>
</tr>
</tbody>
</table>
Progressive Collapse Assessment of RCC Structure under Instantaneous Removal of Columns ..

Table 6: Column forces for the case of removal of critical column C-12

<table>
<thead>
<tr>
<th>Building parameters related to C-13</th>
<th>Value in Damaged condition</th>
<th>Value in Intact condition</th>
<th>Increment in Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial load (kN)</td>
<td>6220.20</td>
<td>4120.77</td>
<td>50.94%</td>
</tr>
<tr>
<td>Bending moment (kN-m)</td>
<td>288.98</td>
<td>185.54</td>
<td>55.75%</td>
</tr>
<tr>
<td>Shear force (kN)</td>
<td>112.47</td>
<td>54.22</td>
<td>107.43%</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

Direct static investigation for dynamic breakdown opposition assessment of a 12 storey RC building has been done for four column removal case namely corner, short edge, long edge and interior as per GSA 2013. Column has been removed at ground floor and at 7th storey each in turn and DCR proportions for shafts in flexure just as shear and PMM values sections are assessed and introduced as bar diagrams.

Beams only up to the topmost storey are going to fail for any Column evacuation instance of ground floor and flexure in pillar is the basic criteria in dynamic breakdown procedure of structure.

For the basic cases seventh story inside evacuation case upper 4 story Beams are a larger number of worries than lower story beams. Since PMM estimations of the greater part of the section (with the exception of C38 and C13) is under 2, segments are not basic in dynamic breakdown procedure of structure. Interior column removal case is the most critical (since values of PMM are nearer to limiting value i.e. 2.0) and corner column removal case is least critical for ground floor column removal.

REFERENCES

[7]. Shefna L Sunamy, Binu P, Dr.Girija K “Progressive Collapse Analysis Of A Reinforced Concrete Frame Building” - International Journal of Civil Engineering And Technology (IJciet), Volume 5, Issue 12, December (2014), ISSN 0976 – 6316(Online).

[9]. Raghavendra C and Mr. Pradeep A R “Progressive Collapse Analysis of Reinforced Concrete Framed Structure” - International Journal of Civil and Structural Engineering Research, Department of Civil Engineering, Sri Siddhartha Institute of Technology, Tumkur, India, April 2014 - September 2014, ISSN 2348-7607.

[10]. Mojtaba Hosseini, Nader Fanaie and Amir Mohammad Yousefi1 “Studying the Vulnerability of Steel Moment Resistant Frames Subjected to Progressive Collapse” - Indian Journal of Science and

[12]. H.R. Tawakoni, and A. Rashidi Alashti “Evaluation of progressive collapse potential of multi-story moment resisting steel frame buildings under lateral loading” - Sharif University of Technology, Department of Civil Engineering, Babol University of Technology, P.O. Box 484, Babol, Iran, 24 October 2012.

Books:

