Characteristic Properties Of Subclasses For The Meromorphically Multivalent Functions

Mr. Vidyadhar Sharma and Dr. Nisha Mathur

Department of Mathematics, M.L.V. Government P.G College
Bhilwara-311001

Corresponding Author: Mr. Vidyadhar Sharma

Abstract: In the present paper, we introduce and investigate some new classes of multivalent functions involving linear operator and derive useful characteristic properties for Meromorphically multivalent functions. Several results are presented exhibiting relevant connections to some other results proved here and those obtained in earlier works.

Keywords: Analytic functions, Meromorphic functions, multivalent functions, linear operator and Hyper geometric function.

Date of Submission: 13-09-2018

Date of acceptance: 28-09-2018

I. INTRODUCTION

For any integer m > –p, let \(T_{p,m} \) denote the class of all meromorphic functions \(f(z) \) of the form
\[
f(z) = z^{-p} + \sum_{r=m}^{\infty} a_rz^r\quad (p \in \mathbb{N}) \quad (1)
\]
which are analytic and p-valent in the punctured unit disk \(\mathbb{D}^* = \{ z; z \in \mathbb{C} \text{ and } 0 < |z| < 1 \} = \mathbb{D}/\{0\} \).

Now we define the general integral operator \(\chi^p_n(\alpha, \beta)f(z) \) which is as follows
\[
\chi^p_n(\alpha, \beta)f(z) = \frac{\beta}{\alpha}z^{-\rho-(\frac{\rho}{\alpha})} \int_0^z t^{\frac{\rho}{\alpha}-1} \chi^p_{n-1}(\alpha, \beta)f(t)dt.
\]
(i) If \(n = 0 \) then the above integral operator \(\chi^p_0(\alpha, \beta)f(z) \) converts into \(\chi^p_0(\alpha, \beta)f(z) = f(z) \).
(ii) If \(n = 1 \) then the above integral operator \(\chi^p_1(\alpha, \beta)f(z) \) converts into \(\chi^p_1(\alpha, \beta)f(z) = \chi^p_0(\alpha, \beta)f(z) \). For the sake of convenience, in particular cases
\[
\int_0^z \chi^p_1(\alpha, \beta)f(t)dt = \left(\frac{\beta}{\alpha} \right) z^{-\rho-(\frac{\rho}{\alpha})} \int_0^z t^{\frac{\rho}{\alpha}-1} \chi^p_0(\alpha, \beta)f(t)dt.
\]
(iii) If \(n = 2 \) then the above integral operator \(\chi^p_2(\alpha, \beta)f(z) \) converts into \(\chi^p_2(\alpha, \beta)f(z) = \chi^p_1(\alpha, \beta)f(z) \). Hence, if \(f(z) \in T_{p,m} \), we obtained the following results
\[
\chi^p_n(\alpha, \beta)f(z) = \frac{1}{z^p} + \sum_{r=m}^{\infty} \left[\frac{\beta}{\beta + \alpha(r+p)} \right] a_r z^r
\]

Therefore from (3), it is easy to see that
\[
\alpha z \left(\chi^{n+1}_p(\alpha, \beta)f(z) \right) = \beta \chi^{n}_p(\alpha, \beta)f(z) - (\alpha p + \beta) \chi^{n+1}_p(\alpha, \beta)f(z) \quad (\alpha > 0)
\]

We observe that (i) \(\chi^{n+1}_p(1,1)f(z) = P^n_p f(z) \) (see, [4]), (ii) \(\chi^{n+1}_p(1,1)f(z) = P^n_p f(z) \) We also see that
\[
\chi^{n+1}_p(1,1)f(z) = \chi^{n+1}_p(1,1)f(z) \quad \chi^{n+1}_p(1,1)f(z) = \chi^{n+1}_p(1,1)f(z) \quad \chi^{n+1}_p(1,1)f(z) = \chi^{n+1}_p(1,1)f(z)
\]

II. DEFINITIONS

Let \(T_{p,m}^{n+1}(\eta, \delta, \mu, \lambda) \) be the class of functions \(f(z) \in T_{p,m} \) which is satisfies the condition
\[
\Re \left(1 - \lambda \left(\frac{\chi^{n+1}_p(\alpha, \beta)f(z)}{\chi^{n+1}_p(\alpha, \beta)f(z)} \right)^{\mu} + \lambda \frac{\chi^{n+1}_p(\alpha, \beta)f(z)}{\chi^{n+1}_p(\alpha, \beta)f(z)} \chi^{n+1}_p(\alpha, \beta)f(z) \right) > \eta
\]
where $g(z) \in T_p, fulfill the following condition $\Re \left(e^{\frac{x_p}{y_p}+i(\alpha, \beta)g(z)} \right) > \delta, \delta \in [0, 1)$ \hfill (6)

Here μ and η belongs to real numbers such that $0 \leq \eta < 1, \mu > 0$ and $\lambda \in c$ with $\Re(\lambda) > 0.$

Currently many scholars and researchers studied similar classes for various types of different operators including Aouf and Mostafa [2], Al-Ashwah [6], [7] et al.

III. PRELIMINARY LEMMAS

The following lemmas will be required in our present investigation.

Lemma i. \quad Let Ω be a set in the complex plane c and let the function $\Psi: c^2 \rightarrow c$ satisfy the condition $\Psi(\tau_2, s_1) \notin \Omega$ for all real $\tau_2, s_1 \leq -\frac{1 + \tau_2^2}{2}$. If $q(z)$ is analytic in with $q(0) = 1$ and $\Psi(q(z), zq(z)) \in \Omega, z \in \mathbb{D}$, then $\Re(q(z)) > 0$ ($z \in \mathbb{D}$).

Lemma ii. \quad Let $q(z)$ be analytic in disk \mathbb{D} with $q(0) = 1$ and if $\alpha \in c/0$ with $\Re(\alpha) > 0$, then $\Re(e^{\alpha} + aq(z)) \geq \lambda, \lambda \in [0, 1] \Rightarrow \Re(q(z)) > \lambda + (1 + \lambda)(\gamma z - 1)$ where γ is given by $\gamma = \gamma (\Re(\alpha)) = \int_0^{\gamma} \left(1 + e^{\Re(\alpha)} \right)^{-1} dt$ which is a function of $\Re(\alpha)$ and $\frac{1}{2} \leq \gamma < 1$. The estimate sharp in the sense that bound cannot be improved.

For the complex or a real number a, b and c ($c \neq 0$ and not negative integer) the Gauss hyper geometric function is defined by $2F_1(a, b, c; z) = 1 + z + \frac{ab}{(c+1)}z^2 + \ldots$

The above series converges absolutely for $z \in \mathbb{D}$ and $2F_1(a, b; c; z)$ is an analytic function in the unit disk $\mathbb{D}.

Each of the identities is well known cf.; e.g., [7].

Lemma iii. \quad For a real or complex parameters a, b and c ($c \neq 0$)

$$\int_0^1 t^{b-1}(1-t)^a \gamma^c dt = \frac{\Gamma(b)\pi^{c+\frac{1}{2}}}{\Gamma(c)}2F_1(a, b; c; z), \Re(c) > R(b) > 0$$

$$\int (1-t)^a \gamma^c dt = 2F_1(a, b; c; z)$$

$2\Gamma n = 2F_1(1, 1; 2)$

IV. MAIN RESULTS

If it is not mentioned in other sense, let us assume that $(\alpha, \beta) > 0, p \in N, n \in N, \eta \in [-B, A]$.

Theorem i. \quad Let $f(z) \in T_{p,m}(\eta, \delta, \mu, \lambda)$ then $\Re\left(e^{\frac{n^p+1(\alpha, \beta)g(z)}{x_p(a, \beta)g(z)}} \right) > \left(\frac{2\nu\mu}{2\mu + \nu} \right)^{1/2}, g(z) \in T_{p,m}(\eta, \delta, \mu, \lambda)$ \hfill (10)

Proof: \quad Let $\frac{2\nu\mu}{2\mu + \nu}$, and we define the function $q(z)$ given by

$q(z) = \frac{1}{1-\gamma}\left(\frac{n^p+1(\alpha, \beta)g(z)}{x_p(a, \beta)g(z)} \right) - \gamma$ \hfill (11)

Then $q(z)$ is analytic in \mathbb{D} and $q(0) = 1$.

If we consider the function $h(z)$ defined by $h(z) = \left(\frac{n^p+1(\alpha, \beta)g(z)}{x_p(a, \beta)g(z)} \right) \hfill (12)$

then by our assumption (8), $\Re(\eta) > \delta$.

Differentiating (12) with respect to z and by the (6), we obtain $\frac{(1-\gamma)\eta g(z)}{\nu}$

$$\Rightarrow \left(1 - \gamma \right) q(z) + \gamma + \frac{a\lambda(1-\gamma)z g(z)h(z)}{\mu \beta}$$

$$= \lambda \left(\frac{n^p+1(\alpha, \beta)g(z)}{x_p(a, \beta)g(z)} \right) - \frac{n^p+1(\alpha, \beta)g(z)}{x_p(a, \beta)g(z)} + \frac{n^p+1(\alpha, \beta)g(z)}{x_p(a, \beta)g(z)} \hfill (13)$$

$$\Rightarrow \left(1 - \gamma \right) q(z) + \gamma + \frac{a\lambda(1-\gamma)z g(z)h(z)}{\mu \beta}$$

$$= \left(1 - \lambda \right) \frac{n^p+1(\alpha, \beta)g(z)}{x_p(a, \beta)g(z)} + \lambda \gamma \left(\frac{n^p+1(\alpha, \beta)g(z)}{x_p(a, \beta)g(z)} \right)^{\mu-1} \hfill (14)$$

Again, we consider the function $P(r, s) = \left\{ r - (r - 1)\gamma + \frac{a\lambda(1-\gamma)z g(z)h(z)}{\mu \beta} \right\}$ \hfill (15)

From (15) and the fact that $f(z) \in T_{p,m}(\eta, \delta, \mu, \lambda), \{P(q(z))q(z); z \in \mathbb{D}\} \subset \Omega$
⇒ \{ w ∈ c : \Re(w) > \eta \}. Now for real \(r_2, S_1 ≤ -\frac{1+\eta^2}{2} \), we have
\[\Re\{\Psi(i r_2, S_1)\} = \Re(\chi z(1−\gamma)αλ + \gamma ≤ -\frac{\delta (1+\eta^2)αλ (1−\gamma)}{2\mu\beta} ≤ -\frac{\lambda (1−\gamma)δ}{2\mu\beta} = \eta. \]
Therefore \(\forall z ∈ \mathbb{D} \setminus \{Ψ(r_2, S_1)\} ∈ \Omega. \)

Thus from the lemma [1], we have \(\Re(q(z)) > 0 \ (z ∈ \mathbb{D}) \) and hence
\[\Re\left(\chi z^{\eta+1}(α, β) f(z)^{\eta}\right) > \eta \ (z ∈ \mathbb{D}). \]

Theorem ii. Let the function \(f(z) \) and \(g(z) \) be in the class \(T_{p,m} \) and let the function \(g(z) \) satisfy the condition (7). If \(α ≥ 1 \) and \(\Re\{1 - \lambda)(z^{\eta+1} f(z)^{\eta} + α z^{\eta+1} f(z)) − \eta\} \), \(\Re\{1 - \lambda)(z^{\eta+1} f(z)^{\eta} + α z^{\eta+1} f(z)\} > \eta \) where \(\eta ∈ [0,1] \) and \((z ∈ \mathbb{D}) \).
\[\Re\left(\chi z^{\eta+1}(α, β) g(z)^{\eta}\right) > \eta \ (z ∈ \mathbb{D}). \]

Proof: If we set \(\left\{\begin{align*}
χ_{p}^\eta(α, β, f(z)) &= (\lambda - 1)\left(\chi_{p}^\eta(α, β, f(z)) + (1 - \lambda)\left(\chi_{p}^\eta(α, β, f(z)) + \chi_{p}^\eta(α, β, f(z))\right)\right) \\
χ_{p}^\eta(α, β, g(z)) &= (2\beta + α\delta) + α(λ - 1)
\end{align*}\right. \)

\(α > 1 \) then the result is obvious.

Theorem iii. Let \(\Re(λ) ≥ 0 \). If \(f(z) \in T_{p,m} \), satisfies the following condition:
\[\Re\{1 - λ)(z^{p} f(z)^{p} + λ(z^{p} f(z))\} > \eta. \]
Then \(\Re\{1 - λ)(z^{p} f(z)^{p} + λ(z^{p} f(z))\} > \eta. \)

Proof: Let \(q(z) = \{(z^{p} f(z)^{p})\} \) \((16) \)

Then \(q(z) \) is analytic with the condition \(q(0) = 1 \). Differentiating (16) with respect to \(z \) and using the identity (6), we get \(q(z) \frac{dz}{d\mu} = z^{p} f(z) - \chi_{p}^\eta(α, β, f(z)) \) \((\chi_{p}^\eta(α, β, f(z)) - \chi_{p}^\eta(α, β, f(z)) \) \(\frac{dz}{d\mu} \) \((16) \)

Now, by the definition of \(q(z) \), we have \(q(z) + z q(z) \frac{dz}{d\mu} = \chi_{p}^\eta(α, β, f(z)) - \chi_{p}^\eta(α, β, f(z)) \) \(\frac{dz}{d\mu} \) \((16) \)

Solving above equation, we get
\[q(z) + z q(z) \frac{dz}{d\mu} = (1 - λ)(z^{p} f(z)^{p} + λ(z^{p} f(z))\} \frac{dz}{d\mu} \]
By the theorem iii and above corollary $\Re \left[z^p e^{n_p}(\alpha,\beta)f(z) \right] = \eta + (1 - \eta)(2\rho_1 - 1) \left(1 - \frac{1}{\alpha} \right)$ where $\rho_1 = \frac{1}{2} F_1(1,1,\frac{\alpha}{\beta} + 1,\frac{1}{\beta})$.

Theorem iv. Let $f(z)$ and $g(z)$ belongs to the class \mathcal{T}_{Pm} and $g(z)$ satisfies the condition

$$\Re \left\{ (1 - \lambda) \left(\frac{\chi^p e^{n_p}(\alpha,\beta)f(z)}{\chi^p e^{n_p}(\alpha,\beta)g(z)} + \lambda \frac{\chi^p e^{n_p}(\alpha,\beta)f(z)}{\chi^p e^{n_p}(\alpha,\beta)g(z)} \right) \right\} > \eta \cdot$$

if $\Re \left\{ \frac{\chi^p e^{n_p}(\alpha,\beta)f(z)}{\chi^p e^{n_p}(\alpha,\beta)g(z)} - \frac{\chi^p e^{n_p}(\alpha,\beta)f(z)}{\chi^p e^{n_p}(\alpha,\beta)g(z)} \right\} \geq -\delta \frac{(1 - \eta)}{2\beta}$

For some $\eta(0 < \eta < 1)$ then $\Re \left\{ \frac{\chi^p e^{n_p}(\alpha,\beta)f(z)}{\chi^p e^{n_p}(\alpha,\beta)g(z)} \right\} > \eta$

and $\Re \left\{ \frac{\chi^p e^{n_p}(\alpha,\beta)f(z)}{\chi^p e^{n_p}(\alpha,\beta)g(z)} \right\} > \eta(2\beta + 3\delta)$

Proof: let $(z) = \frac{1}{(1 - \eta)} \left(\frac{\chi^p e^{n_p}(\alpha,\beta)f(z)}{\chi^p e^{n_p}(\alpha,\beta)g(z)} - \eta \right)$, then $q(z)$ is analytic function in \mathbb{D} with $q(0) = 1$. Now, if we setting $\varphi(z) = \frac{\chi^p e^{n_p}(\alpha,\beta)f(z)}{\chi^p e^{n_p}(\alpha,\beta)g(z)}$, then form (7), we have $\Re(\varphi(z)) > \delta$ and $\delta \in \mathbb{D}$. A easy calculation show that

$$(1 - \eta)q(z) = \frac{\chi^p e^{n_p}(\alpha,\beta)f(z)}{\chi^p e^{n_p}(\alpha,\beta)g(z)} - \eta \eta \left(\frac{\chi^p e^{n_p}(\alpha,\beta)f(z)}{\chi^p e^{n_p}(\alpha,\beta)g(z)} \right)^\gamma$$

Solving above and using the relation (4), we have $\alpha(1 - \eta)q(z) = \frac{\chi^p e^{n_p}(\alpha,\beta)f(z)}{\chi^p e^{n_p}(\alpha,\beta)g(z)} - \frac{\chi^p e^{n_p}(\alpha,\beta)f(z)}{\chi^p e^{n_p}(\alpha,\beta)g(z)} = \varphi(q(z), zq(z))$.

where $\Psi(r, s) = \frac{(1 - \eta)\varphi(z)}{\beta}$

So by our assumption

$$\{\Psi(q(z), zq(z); z \in \mathbb{D}) \} \subset \Omega = \left\{ \omega \in C: \Re(\omega) > -\frac{(1 - \eta)\delta}{2\beta} \right\}$$

$$\Re(\Psi(ir_2, s_1)) = r_1(1 - \eta)\Re(\varphi(z)) \leq -\frac{(1 - \eta)\delta}{2\beta}$$

This is shows that $\Psi(ir_2, s_1) \notin \Omega$ for each $z \in \mathbb{D}$. Hence by the lemma [1] we get $\Re(q(z)) > 0 (z \in \mathbb{D})$. This is the proof of (18). Now for the proof of (19), $\Re \left\{ \frac{\chi^p e^{n_p}(\alpha,\beta)f(z)}{\chi^p e^{n_p}(\alpha,\beta)g(z)} \right\} = \Re \left\{ \frac{\chi^p e^{n_p}(\alpha,\beta)f(z)}{\chi^p e^{n_p}(\alpha,\beta)g(z)} - \frac{\chi^p e^{n_p}(\alpha,\beta)f(z)}{\chi^p e^{n_p}(\alpha,\beta)g(z)} \right\} +

\Re \left\{ \frac{\chi^p e^{n_p}(\alpha,\beta)f(z)}{\chi^p e^{n_p}(\alpha,\beta)g(z)} \right\} \geq \frac{(1 - \eta)\delta}{2\beta} + \eta$

which is the complete proof of (19).

REFERENCES

