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Abstract: Starting from a real-valued Markov chain with stationary transition probabilities, a 

random element  of the function space  is constructed by letting 

 and assuming  constant in between. Simple tightness criteria for 

sequences  of such random elements in  are then given in terms of the one-step 

transition probabilities of the underlying Markov chains. Applications are made to Galton-Watson branching 

processes. 
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I. INTRODUCTION AND SUMMARY 

Let  be a sequence of real-valued Markov chains with stationary 

transition probabilities ; that is, for every Borel set E, the relation 

 
is satisfied with probability 1. With each of these Markov chains we associate a continuous-time 

process  defined by 

              

Then  can be considered as a random element of the space  consisting of 

all functions on  with no discontinuities of the second kind. With the Skorokhod topology 

 this space becomes a complete separable metric space. In this paper we will study -

convergence of the sequence ; that is, weak convergence of the corresponding sequence of 

probability measures on .  

Assume that  is -convergent with limit  and let  be a 

functional on   which is continuous with respect to the Skorokhod topology. Then we have 

 

 
This shows that -convergence can be a useful tool when we want to study properties of the processes 

 and  that cannot be expressed in terms of their finite-dimensional 

distributions. If the distribution of  is known,  given and approximate distribution of  for 

large . On the other hand, if the distribution of   is unknown, we can sometimes choose the 

approximating processes  so simple that  yields some information about the 

distribution of . The last method is particularly important when simulation techniques are employed. 

By a famous theorem due to Prokhorov  a sequence  of random elements in 

 is conditionally compact if and only if it is tight. This suggests a useful method to establish -
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convergence. First we show that the finite-dimensional distributions converge and then we prove that  is 

tight . From classical probability theory we have a rich supply of tools for determining 

convergence of finite-dimensional distributions. Therefore, we will in this paper confine our interest to tightness 

criteria. 

-convergence in connection with Markov processes, in particular diffusion processes, has been 

treated by Skorokhod, Gikhman, Borovkov and others. Since the infinitesimal approach to a diffusion process is 

the most convenient one, their conditions for -convergence usually have been based on the asymptotic 

behavior of the two first moments of the increments within a short time-interval. Here we will mainly emphasize 

“continuity properties” of the transition probabilities  considered as functions of a. It has also been 

our aim to give our tightness criteria a simple form. Therefore, they have, to the greatest possible extent, been 

based on properties of the one-dimensional projections of our processes and the one-step transition probabilities 

of our Markov chains. 

The plan for this paper is as follows. In Section  we start by showing how the general tightness 

conditions in  can be simplified, when the processes  are constructed from Markov 

chains as in . At the end of the same section we make our first attempt to relate the tightness of the 

sequence  to the properties of the projections . The main results here are generalizations of 

corresponding results in . 

Even if the  are constructed from Markov chains, all limit processes need not be 

Markov processes. In Section  we will give sufficient conditions for this to occur. These conditions will take a 

particularly simple form if the  are constructed from stochastically monotone Markov 

chains; that is, Markov chains such that the transition probabilities  are non-increasing in  

for each fixed .  

In Section  we will continue to study the relations between the properties of the projections  

and the tightness of the sequence . All Markov chains considered in that section are stochastically 

monotone. Section  is devoted to an application of the theory in earlier sections. We will study  

-convergence of a sequence of normalized critical Galton-Watson processes. In fact, we will be able 

to show that -convergence in this case is equivalent to convergence of the finite-dimensional distributions, 

provided we make an exception for degenerate limits. 

 

II. CONDITIONAL COMPACTNESS OF A SEQUENCE OF MARKOV CHAINS 

From now on,  will always denote a sequence of Markov chains with stationary 

transition probabilities. If nothing else is stated, we will assume that . The one-step 

transition probabilities of the  Markov chain are denoted by . Transition probabilities 

corresponding to several steps are denoted by , where  is the number of steps and  is assumed 

to be chosen from the set  

. Thus, for every Borel set , the relation  

 
is fulfilled with probability . 

The continuous-time process  defined by  will be called the process or the “random 

Markov line” associated with . When , considered as a random 

element of , converges weakly to the random element  of , we will write 

 
All our theorems will be stated for Markov chains with the real line as common state space. But there should be 

no difficulty to give corresponding results when the state space is the half-time  or a compact interval.  

We are now ready to give the fundamental theorem on conditional compactness of a sequence of random 

Markov lines. 
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Theorem 2.1. Let  be a sequence of Markov chains with transition probabilities 

 satisfying , and let  be the associated sequence of continuous-time 

processes. 

Assume that 

(i) , uniformly in ; 

(ii)for every compact set  and every  there exists  

Such that 

   

for all  and . 

Then the sequence  of random elements in  is tight. 

 

Proof: We shall show that the conditions for tightness given in  are satisfied. But this can 

be done by an almost verbatim repetition of the arguments in . Further details are therefore 

omitted.Let  denote the probability measure which to each Borel set  assigns the number 

, where . Intuitively,  corresponds to the conditional 

distribution of  , given . Although the transition probabilities  always 

can be expressed directly in terms of the one-step transition probabilities, it is in many cases easier to calculate 

the convolutions of the measures  . Therefore, we shall state and prove two theorems where 

the tightness conditions are given in terms of these convolutions. But first we consider the case when  is the 

 partial sum of a sequence of independent equality distributed random variables. Then the measures 

, defined as in Theorem  below, can be taken independent of , and by a 

theorem due to Prokhorov , the sequence  in  is tight if and only if  

 is tight. The following theorem generalizes this fact. 

 

Theorem 2.2.  Let  be a sequence of Markov chains with transition probabilities 

, and denote the measure  by . Assume that 

i)   is tight. 

Then the random elements  associated with the Markov chains form a tight sequence in 

. 

 

Proof: Let  be the characteristic function of  . The family   is tight if and only if  

 is equicontinuous at zero. Thus, for every , there exists a  such that  

  for all  

Using the inequalities and , valid for all  in some neighbourhood of zero, 

we conclude that 

  for all  

Similarly, for all , there exists an integer   

such that 

  

  for all  
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(Some of the arguments above might fail if  is large but we need only consider sufficiently small .) 

  

If  denotes the characteristic function of  , we can easily show by induction  that 

  for all  . 

Hence, by a well-known inequality for characteristic functions , we get 

 

 In order to show that condition (i) in Theorem 2.1 is satisfied we need the following Kolmogorov type 

inequality. 

 

Proposition 2.3. Let  be a homogeneous Markov chain such that, for some 

 and , 

  a.s. 

Assume that we can choose  so large that 

. 

Then we have  

  for all  . 

 

Proof: We need only consider the case . Let  be the hitting-time for the set 

  and put  if . Since , 

we can choose integers  such that  for  and 

. Then we get  

 

 

 

 .                          (2.7) 

 

On the other, 

 

 

 
By conditioning with  and using the Markov property, we get 

 

 

 

 

 

 

 

 

 

Hence, by  and , 
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for all  , and this completes the proof of the proposition. 

We now return to the proof of Theorem 2.2. By the same arguments as those preceding Proposition 2.3, we can 

prove that 

  for all    

Where  now denotes the characteristic function of   and the distribution of   is arbitrary. 

Starting from the inequality  , valid for all characteristic functions 

, we can easily prove that 

 

Applying  to the characteristic function , we get 

 

and from  we obtain 

 

 

Since the distribution of   is arbitrary,  is equivalent to 

 

  

for all  sufficiently small. For our original Markov chains  means that 

 

  

That condition (i) of Theorem 2.1 is fulfilled now follows from ,  and  

Proposition 2.1, while (ii) follows directly from . Thus  is tight. 

 Condition (i) of Theorem 2.2 is in general too strong to be useful in applications. Therefore, we shall 

prove two simple generalizations of that theorem. The first one,  

 Theorem , is natural to use when we are dealing with sequences of normalized branching Markov 

processes. The second one, Theorem 2.4, can be applied when we are studying convergence to a Brownian 

motion with reflecting barrier and similar processes. 

 

Theorem  Assume that 

 (i) ; 

 (ii)   is tight for every compact . 

Then the sequence  is tight in . 

 

Proof: Consider a Markov chain with one-step transition probabilities 

 

And let  be the corresponding random Markov line. By Theorem 2.2  is tight in . 

Observing that 

, 

where  is the continuity modulus defined in  and using [1, Theorem 15.2], we can easily 

complete the proof. 
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Application. For sequences of normalized Galton-Watson processes the conditions of  

Theorem  become very simple. Let, for each  denote the variables of a Galton-Watson 

process, where the number of off-spring of one individual is determined by the probabilities  . Define a 

sequence of continuous-time processes  by  

 

 , 

 

where  are normalizing constants. If  is a probability measure that gives mass  to the point 

 , condition (ii) of Theorem  is satisfied if  

 

 is tight. 

Condition (i) can easily be checked if we observe that  is a supermartingale 

(submartingale). 

 Sometimes it is convenient to consider the subspace  of . This subspace consists of all 

continuous functions on  and the Skorokhod topology relativized to  is equivalent to the topology 

of uniform convergence. Here we will only give an example which indicates how sufficient conditions for -

convergence in  can be obtained. As before,  denotes a sequence of 

Markov chains with transition probabilities  and . 

 

Theorem 2.4. Assume that 

 (i)there exists a point  such that, for every -neighbourhood  of , the family 

  is tight. 

Then the sequence of measures on  corresponding to the random polygonal lines  

defined by 

 

  

 

Is conditionally compact, provided 

 (ii)for each , uniformly in  

 

Proof: Let  denote the random element in  defined by . We shall use Theorem 2.1 to prove that 

 is tight. Let  be given. From the proof of Theorem 2.2 it follows that we can choose  so small 

that  

. 

 

Let us now consider a Markov chain  with transition probabilities  and such that 

, where . Denote by  the hitting time for the set 

. By the assumption (ii) we get  

 

 

 

for all sufficiently large . The strong Markov property then shows that there exists an integer  such 

that 

. 
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Similarly, we show that condition (i) in Theorem 2.1 is satisfied so that , is tight in . Observing that 

for all  sufficiently large the probability that {  has a jump exceeding  is less than , we 

can use [1, Theorems 8.2 and 15.2] to complete the proof. 

Assume that the measures  are independent of  ; that is,  

is the  partial sum of a sequence of identically distributed independent random variables. Then  is 

tight if and only if   is tight . We shall give a rather natural generalization of this 

theorem. 

 

Theorem 2.5. Assume that  

 (i) , uniformly in ; 

 (ii)for every bounded interval  there exists a constant  such that  

 for all  and all  (here  is the  

Characteristic function of the measure  ); 

 (iii)   is tight. 

Then the sequence  of random elements in  is also tight. 

 

Proof:Since , it is no restriction to assume that 

. Let  be the characteristic function of the measure 

 

 
 

Some simple calculations show that 

 

  

 

for all  and all . 

Put  and  and let , 

where  are independent random variables, each one with distribution .  Then by the Berry-Esseen 

theorem on normal approximation  we have (notice that . 

 

  

for all  and all .  

Let us now consider . Assume that  is infinite. By suitable choices of  

 and . We can then simultaneously make  arbitrarily small and  arbitrarily 

large. Thus, by (2.18) and (2.19). 

. 

 

provided  is small enough and  is large enough. But this implies that, for any given  and 

bounded interval  , we can choose  so that  

. 
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Obviously this contradicts the assumption (iii) and so  must be finite.  By Chebyshev’s inequality, 

 

 

If  were infinite, we would be able to choose subsequences 

 and  such that  and 

 

. 

However, this contradicts (2.17). Thus,  must be finite and  is tight. By Theorem 

2.2, the random Markov lines  form a tight sequence in . By the 

assumption (iii), this is possible only if  is finite. Hence  is also tight in 

. 

 

III. REMARK 

In Theorem 2.5 it was proved that  is tight in  if   is tight. The converse is 

not true in general. However, we can see from the proof of Theorem 2.5 that tightness of  implies 

tightness of   if we make the additional assumptions (i) and (ii). 

 

 Assume that we have established the convergence . 

In , for any continuous functional  on  we then get  

 

  

 

 As we pointed out in the Introduction, (3.1) is useful mainly in the case when we can compute the 

distribution of . Therefore, it is interesting to see if, under general and simple conditions, we can show that 

the limit process  must be of a particularly simple type. In this section we shall give 

sufficient conditions for the limit process to be a Markov Process. In our theorems all the approximating 

Markov chains are assumed to be stochastically monotone. In a remark at the end of this section we will indicate 

how the general case can be treated. The notation is the same as in the previous sections. 

 We start by giving some measure-theoretical facts. 

 

Proposition 3.1. Let  and  be any two probability distribution with finite mean-values  and , 

respectively. Assume that 

 

 . 

Then 

  

     

for all increasing functions  such that  is finite. 

 

Proof: Let  and put . For the two 

functions  and  it then holds that  for all . Observing that  

  

   

 

and approximating the integrals by sums we can easily complete the proof. 
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Proposition 3.2. Assume that  

(i)There is a constant  such that  

 

(ii)  is non-increasing in  for fixed  and . 

 

Then we have  

 

 

 

for all increasing functions .  

 

Proof. Apply Proposition 3.1. 

In Section 4 we shall also need the following result. 

 

Proposition 3.3. Let  be a family of transition probabilities satisfying conditions (i) and 

(ii) of Proposition 3.2, and assume that, for some  and , 

  

 

 

Then there exists , depending only on  and , such that 

 

 for all . 

 

Similarly, 

 

 

Implies that 

 

  for all ,  

where  depends only on  and . 

 

Proof: It is enough to prove the first assertion. Applying Proposition 3.2 to the function 

 

 

We can easily choose  depending only on  and , such that  

 for all . Some simple estimations then show that 

  

 for all . 

 

On the other hand, for , it follows from the stochastical monotonicity that  
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Remark.  For simplicity, we will always assume that the transition probabilities  have finite mean 

values. Actually, if there is a constant  such that 

. 

 

neither  the convergence nor the limit is changed if we let  give all its mass to the finite interval 

. 

 Under conditions (i) and (ii) of  Proposition 3.2, it is possible to prove that the weak limit in  

of a sequence  of random Markov lines must be a stochastically continuous Markov process. However, 

the proof of the stochastical continuity is quite technical unless we make the additional assumption that for 

every , 

 

 

 uniformly in  and , for each compact set . In view of Theorem 2.1, the assumption (3.2) 

is rather natural. It will also permit us to give a direct construction of the semi-group corresponding to the limit 

process. 

 

Theorem 3.4. Let  be a tight sequence of random Markov lines. Assume that the transition probabilities 

satisfy condition (3.2) above as well as  

(i)There exists a constant such that 

 

(ii)  is non-increasing in a  for fixed  and . 

Then every limit process of  is a stochastically continuous Markov process having a Feller semi-group. 

 

Proof: By Prokhorov’s theorem,  is relatively compact in , so we can without restriction assume 

that  converges weakly to some random element  in . From condition (3.2) above, it is easily 

deduced that  is stochastically continuous. Let us then consider the projection  taking 

 into  is continuous at 

  if and only if  is continuous at . Thus, the stochastical continuity of  

 implies that 

 

 

for all . In terms of the transition probabilities, (3.3) can be written 

. 

 

Applying Proposition 3.2, we can then immediately show that  

 

 is tight for every  and . 

 

By taking a subsequence  if necessary, we get: 

 

 is weakly convergent for all  and all ,        

 where  denotes the rational numbers. Using exactly the same method as in the proof of Proposition 

3.3, we can show that the convergence in (3.4) must hold for all . By the Markov property and the 

assumption (3.2), we can even shown that 

 

 is weakly convergent for all  and all ,        
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Let denote the class of all bounded increasing functions  such that 

 is finite. We can then define a linear mapping of   

into itself by the relation 

. 

 

Applying the Markov property and the assumption (3.2) once again, it is a routine to prove that 

 

 

 

for all  and  Furthermore, 

 

 . 

, 

. 

 Until now we have only defined  for . But we can immediately extend the definition 

to the linear space  consisting of all differences of functions in . Then  becomes a positive linear 

operator on . Since  is dense in the space  consisting of all bounded continuous functions with limits at 

 and , we can extend  uniquely to a positive linear operator on  such that . By Riesz’ 

representation theorem, there exists, for every fixed  and , a unique probability measure  such that 

 

 

 for all  . It is a routine to prove that the  form a family of transition probabilities 

generating our limit process . From (3.5) and the stochastical monotonicity it follows 

immediately that the family  of probability measures is tight for every bounded interval . Hence 

(3.6) defines a Feller semi-group, i.e.,  is bounded and continuous for all bounded and continuous functions 

. This completes the proof of Theorem 3.4. chains an have transition probabilities satisfying condition (i) and 

(ii) of  Proposition 3.2. These two conditions can be replaced by the weaker condition  there exists a 

constant  such that  

 

 

 

for all bounded continuous functions  and all  . A repetition of the arguments in this section shows that 

Theorem 3.4 will continue to bold true. 

 

IV. TIGHTNESS CONDITIONS FOR SEQUENCES OF STOCHASTICALLY MONOTONE 

RANDOM MARKOV LINES 

 In this section the random Markov lines  will always be constructed from a 

sequence  of stochastically monotone Markov chains. If   

 is -convergent with limit  , we know that the one-dimensional projections 

 converge weakly to  with a possible exception for a countable set of time-points. It is our intention 

to find out to what extent we can argue in the opposite direction. Actually we shall show that, under rather 

general conditions, it is possible to deduce tightness of  directly from the properties of the projections 

 and . The main tools will be some well-known theorems on martingales. Therefore, we shall start 

by proving a lemma on the convergence of a sequence of martingales that might be useful even if we cannot 

establish tightness of the corresponding sequence of random elements in . The notation is the same as in 

the previous sections. 
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Lemma 4.1. Assume that 

(i) ; 

(ii) . 

Then every subsequence of   contains a further subsequence  such that 

(a)  is weakly convergent for all . 

(b) The limit distributions  of   define a function from  in to the space  of 

onedimensional probability distributions, which is continuous as all ,  

if    has the Levy metric. 

 

Proof: Conditions (i) and (ii) show that  is a martingale. Thus, for all , 

 

 

 

 

The family  of distributions corresponding to the  is therefore tight and we can 

immediately find a subsequence , such that  is weakly convergent to some distribution  

for all . Here  denotes the set of rational numbers. 

Let us now assume that we can find a time-point  such that  

 does not exist. Then, for some , there is a sequence  which is 

increasing to  and such that the Levy distance  exceeds  for all . For every fixed  we 

obtain 

 

 

 

for all sufficiently large . 

Because  is tight, we can find a constant  such that  

 

  

for all  and . By (4.2) and the definition of the Levy metric we can, for 

  and all sufficiently large , choose  so that either 

 

 

or 

  

By (4.3), . Let us now cover the interval  with finitely many intervals 

, each one having a length between  and . Denote by  and , respectively, the 

number of up-crossings and down-crossings by the function  of the interval . Then by 

(4.4) and (4.5) we obtain  

 

 
for all sufficiently large . But (4.6) contradicts the fact that  
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So we have proved that   exists for all . Similarly 

  exists for all . Denote these limits by --------and -------- respectively. 

 We shall now show that 

 

 

 

for all . We let  denote the support of the distribution . Assume that for some , 

there exists a strictly positive ----------such that, for arbitrarily small , the inequality 

 

     

 

holds for some . By Proposition 3.3, we can choose ------------ so that 

 

 

for all . Since  and , we can also 

determine  so that 

 

 

           

  

for all . For every fixed integer , we now choose  rational points, 

 , in the interval . Keeping (4.9) and (4.10) in mind, it is not very difficult to 

see that from each interval  we get a contribution exceeding  to the 

value of  

 

 

 

4.Tightness conditions for sequences of stochastically monotone random Markov lines 

provided  is suitably chosen. Consequently 

 

 

  

 

for some . Since  is arbitrary, (4.11) contradicts the general inequalities on the expected number of 

up-crossings and down-crossings of a martingale. Thus we have proved that, for every . 

 

 

 

uniformly -------and--------where  is compact and --- depends only on . 
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For any given  we now choose . So large that  

----------------------------------- 

for all . By , we can choose  so small that 

 

 

 

for all ,  and . Here  depends only on . Obviously, 

 has probability zero with respect to the distribution  . Since 

  , we can also assume that we have taken  so small that  

 

 
 

for all . It is then easy to show that (4.13), (4.15) imply that, 

 

 
 

for all . Finally, we get 

 

 
 

for all , which implies that 

 

 
 

Similar arguments show that 

 

 
 

And this completes the proof of Lemma 4.1. 

 

Remark: In the proof of Lemma 4.1 we have used theorems on the number of up-crossings of a martingale. 

Similar theorems hold for supermartingales and submartingales. Under conditions (i) and (ii) of Theorem 4.2 

below, there is a constant  such that  is a supermartingale (submartingale) for all 

. Condition (iii) below is then sufficient for the lemma to remain true also in that case. 

For sequences of stochastically monotone random Markov lines we can now prove. 

 

Theorem 4.2. Assume that 

(i)  

(ii)   

  

(iii)There exists a constant  such that; for all , 

 

(iv)  converges weakly to some probability distribution with strictly increasing     

distribution function.  

Then the sequence  be an arbitrary subsequence of  . We shall prove that  has a convergent 

subsequence  . By the remark following Lemma 4.1, we can choose a subsequence  such 
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that  for all  and . The assumption (iv) shows that 

. Repeating the arguments leading to (4.12) in the proof of Lemma 4.1, we can show that 

 

uniformly in  and , for every compact set  and every . Supermartingale (submartingale) 

inequalities show that  

 

. 

Thus, by Theorem 2.1,  is weakly conditionally compact and  must contain a convergent 

subsequence. 

 

Application: Let  be a Galton-Watson branching process governed by certain fixed probabilities  . 

Here  is the probability that one individual in the  generation gives rise to  individuals in the  

general on. We will assume that  considered as a probability distribution has mean  and finite strictly 

positive variable . Define, for each , a continuous-time process 

 

 

where  is the number of individuals at time   and  are normalizing constants 

such that . 

 Let us now assume that there exists a stochastic process  such that  is non-

degenerate for  and the finite dimensional distributions of  converge to those of  

. Then  is equivalent to the process , where 

 and  are constants and  is a Brownian motion 

. Still following Lamperti, we can also see that  is bounded 

and so  

 

 

 

Since  and  is conditionally compact by 

Theorem 4.2. Thus, we get 

 

 This means that, for all functionals  on  which are continuous with respect to the Skorokhod 

topology, we have shown that 

 . 

 

 The -convergence in (4.18) has been proved by other methods in [13]. In Section 5 we shall give a 

more detailed discussion of -convergence of sequences of branching processes. 

 Proceeding in the same spirit as in Lemma 4.1 and Theorem 4.21, we get: 

 

Theorem 4.3. Let  be a sequence of random Markov lines corresponding to a sequence of stochastically 

monotone Markov chains. Assume that 

(i) ; 

(ii)   

  

(iii)for every , the projection  converges weakly to some distribution    

with strictly increasing distribution function. 

Then the sequence  of random elements in  is weakly conditionally compact and every limit 

corresponds to a stochastically continuous process on the interval . 
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Proof: Using exactly the same method as in Lemma 4.1, we can immediately see that  

exists for all . Denote this limit by . We shall show that 

  for at least one time-point . Assume that the converse holds. Since the Levy distance 

 for uncountably many values of , we can find a  such that  for 

infinitely many . This means that, for any positive integer , we can find  points. 

    , such that  

 

. 

 As in Lemma 4.1, this contradicts the inequalities on the expected number of up-crossings and down-

crossings of an interval. Thus, we can choose a point  such that  

 

 , 

 

where . Once again proceeding as in the proof of Lemma 4.1, we can show that, for every  

and , 

 

 

 uniformly in . Because the underlying Markov chains  are stochastically monotone, 

the convergence in (4.19) must be uniform in  for all compact sets . Applying Theorem 2.1 we can then 

complete the proof of Theorem 4.3. 

 We shall terminate this section by discussing the convergence of sequences of increasing and 

stochastically monotone Markov chains. In this case the conditions for conditional compactness become much 

simpler. In an important special case we can also show that every limit process  is a Markov 

process if, for all ,  has a strictly positive density on . These results are summarized in 

the following theorem. 

 

Theorem 4.4. Let  be the random Markov lines corresponding to a sequence of increasing 

and stochastically monotone Markov chains. Then the sequence  

 is weakly conditionally compact provided  

(i)for each  converges weakly to some distribution  with strictly positive  density on 

; 

 (ii)for every  and every compact set ,  

, uniformly in . 

Moreover, every limit process is a Markov process and has continuous sample paths with probability . 

 

Proof: The sequence  is stochastically bounded. Therefore, 

 

Obviously,  has no down-crossings and at most one up-crossing of each interval. Thus, we 

can prove that  is conditionally compact exactly as in Theorem 4.3. Condition (ii) implies that every limit 

process has continuous sample paths with probability . 

It remains to prove that every limit is a Markov process. According to proof of Theorem 3.4, it is enough to 

show that, for any given  and , there exist  and  such that 

 

for all  and all . We shall assume the converse and derive a contradiction. 

If 4.20 does not hold, there exist  and  such that, for every neighbourhood  of  

and every , 
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 for some  ,  and . Recalling that the underlying Markov 

chains are stochastically monotone we can show that it is no restriction to assume that  , 

where  is a constant depending only on and . Using exactly the same method as in the 

proof of Lemma 4.1 we can choose  so small that  

 

 

for all  and . By (4.21), (4.22) and Chapman-Kolmogorov’s equation we then get 

 

  

    

  

 

But 

 

 

. 

Thus, by (4.23), we can find  and  arbitrarily close to  and an arbitrarily large  such that  

 

 

 

This means that there exist integers  with the following property: 

 

     For every  and every neighbourhood  of  we can find at least  disjoint  

  intervals , such that, for some  , 

 

 

holds simultaneously for all . 

Let, for all  denote the hitting-time of  for the interval  and set 

 if  is less than  for all . Let us then consider  . It is no 

restriction to assume that  . Furthermore, by the  

assumption (ii),  

 

 
 

Using the (strong) Markov property, (4.25) and (4.26), we can then see that 

 

 

 could be made arbitrarily small if  could be chosen arbitrarily large. But this contradicts the 

assumption (i). Thus there exists an integer  such that  holds true and  does not hold for 

any  . 
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On the other hand, if there exists such a maximal , we can find a fixed  and, for any  and any 

sphere  disjoint intervals , such that the inequalities 

 

 

 

 

Hold simultaneously for some . (Obviously it is no restriction to assume that ). From (4.27), 

it follows that  

 

  

 

for all  and all . Using the Markov property, (4.28) and (4.29), we get 

, 

   for some  . 

 

 

   for some   

] 

. 

 

Hence, for all  

 

  , 

 

Which obviously contradicts the assumption (i). This completes the proof of Theorem 4.4. 

 

V. WEAK CONVERGENCE OF NORMALIZED GALTON-WATSON PROCESSES 
 In Section 4, we showed how our general results on the transition from a sequence of stochastically 

monotone Markov chains to a continuous-time process could be applied to sequences of normalized Galton-

Watson processes. Here we will give a more detailed discussion of this topic. 

For each fixed , let  denote the random variables of a Galton-Watson branching process 

governed by the probabilities  . Here  denotes the probability that one individual in the  

generation of the  branching process gives rise to  individuals in the  generation of the same 

process. Let us then introduce the continuous-time processes 

 

 

 

where  . We shall always assume that  are positive integers . While  and  

are normalizing constants. We shall also assume that there exist stochastic processes  such 

that 

 

 

For all  . Lamperti has then proved the following two theorems 

(see [12]). 
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Theorem 5.1. Suppose that (5.2) holds with  and  for some 

 . Then  is a continuous state branching process, ie., a Markov process with 

transition probabilities  satisfying. 

(i)for fixed  and  is a probability measure on the class of Borel sets    

in ; 

(ii)for every Borel set  is jointly measurable in  and ; 

(iii) ; 

(iv)for all  and ,  

, 

where  denotes convolution; 

(v)there exist  and  such that . 

 

Theorem 5.2. Suppose again that (5.2) holds, where we now assume that . Then 

 is a process with stationary independent increments. If  , the canonical measure 

governing the distribution of the increments of  has support contained in . If 

 , the canonical measure is supported on the set  for some positive b. 

We shall we examine the convergence in these two theorems and prove that convergence of the finite-

dimensional distributions implies weak convergence in , provided the probability distribution  

has mean value  for all . As we can see from the proof, it is easy to generalize this to the case when the 

mean value is of the form . 

Let us start by examining the convergence in Theorem 5.1. Since  evidently must converge and 

, 

 

for all . However, each  is a martingale. Hence, 

 

 

for all  and , and the first condition in Theorem 2.1 is satisfied.  

Before we start examining the transition probabilities , let us consider the following: 

 

Proposition 5.3. Let  and  be given numbers. Then we can find  such that, 

for any  and any set  of identically distributed independent random variables, it holds 

that 

. 

 

Proof: We use the same kind of arguments as in the beginning of the proof of Theorem 2.2. Then we know that, 

for every  and all  small enough, 

 

implies that 

 . 

And the last inequality implies that 

. 

The rest of the proof is obvious. 

We shall now prove that the transition probabilities  satisfy condition (ii) in Theorem 2.1. By 

assumption, there is a point  such that 
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Proceeding as in the proof of Lemma 4.1, we get 

 

From (5.5), (5.6) and the proof of Lemma 41, it follows that there exists a strictly positive real number  such 

that 

 

 

Uniformly in , for every  

Since  is an integer-valued process, we can set 

 

 

For all . By Proposition 5.3 and (5.7), we then get 

 

 

 Uniformly in  and , for every compact set . Hence, by Theorem 2.1 and 

Prokhorov’s theorem;  is conditionally compact in . Let  and  denote any two limit 

distributions of   . We can then select subsequences  and  such that  

, 

, 

 For all  , where  is a countable set not containing (see [1, p.(24)]). By 5.2, 

the distributions of  and  coincide for all 

. Applying [1, Theorem 14.5], we conclude that  and  define the same probability 

distribution in . But a conditionally compact sequence with only one limit point must be convergent. 

Thus, 

  

. 

 

Since  is continuous in probability by Theorem 3.4,  

 

, 

for all . But then the finite-dimensional distributions of  coincide with those 

of  in (5.2), and this completes the discussion of Theorem 5.1. 

 We shall now turn to the discussion of the convergence in Theorem 5.2. We start by giving a result 

from the theory of triangular arrays. 

 

Proposition 5.4. Let  be a triangular array of random variables such that 

(i)for each  the variables  are identically distributed and independent; 

(ii)  

(iii)  . 

With  we then have  , provided  is stochastically bounded. 

 

Proof: Following [6, p. 308], we introduce the continuous truncation function  
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Define  and  . For is non-negative. Moreover, for  

sufficiently large, both  and  are stochastically bounded. Still following [6], 

we conclude that  is bounded and so  is bounded too. Since  is non-negative 

and , we obviously have 

 

and the proposition is proved. There is no difficulty to generalize this result to triangular arrays  

 , where  is an arbitrary sequence tending to infinity. 

 There is no loss of generality in assuming that  in Theorem 5.2. If we exclude the case when 

the limit process is degenerate, we can also assume that . Let us now consider the 

probability law . It coincides with the law of  , where the  are independent 

random variables representing the number of individuals in the  generation of  who are descended 

from each of the  original ancestors. Proposition 5.4, with  show that  

. 

 Nothing that  is a martingale, we have shown that the 

sequence  satisfies condition (i) of Theorem 2.1. Proceeding as in the discussion of the convergence in 

Theorem 5.1, we can prove that  is conditionally compact. Thus, we have the following. 

 

Theorem 5.5. Let  , for each , denote the random variables of a critical Galton-Watson 

branching process and define by 5.1 a sequence of continuous-time processes  . Assume 

that there is a non-degenerate stochastic process  

such that the finite-dimensional distributions of   converge to those of . 

Then there is a random element  in  with the same finite-dimensional distributions 

as  and such that 

 

   . 

 

VI. CONCLUSION 
 In this paper we have only considered Markov branching processes. In future, corresponding tightness 

and convergence results for age-dependent branching processes will be given. 
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