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Abstract: - The publication suggests how to significantly improve the spacecraft center of mass movement 

stabilization accuracy in the active phases of trajectory correction during interplanetary and transfer flights, 

which in some cases provides for high navigation accuracy, when rigid trajectory control method is used. 
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I. INTRODUCTION 
In some cases, when using a control system built according to the principle of program control (the 

"robust trajectories" method) the efficiency of task solution is much influenced by the accuracy of the spacecraft 

stabilization system in the powered portion of flight. This concerns, for example, the trajectory correction 

phases during interplanetary and transfer flights, when the rated impulse execution errors during trajectory 

correction resulting from various disturbing influences on the spacecraft in the active phase, greatly affect the 

navigational accuracy. Hence, reduction of the cross error in the control impulse on the final correction phase 

during the interplanetary flight, facilitates almost proportional reduction of spacecraft miss in the "perspective 

plane". For example, in some space probes (SP) like Deep Impact [1, 2] and Rosetta missions [3, 4] reduction of 

cross error by one order during the execution of correction impulse (for modern stabilization systems this value 

shall be 5.0 )/ sm  results in reduction of spacecraft miss in the "perspective plane" from 200 to 20 .km  Such 

reduction of the miss  accordingly increases a possibility of successful implementation of the flight plan, as well 

as the accuracy of the research and experiments conducted [5].Objectives: to solve the task of significant 

increase in stabilization accuracy of center of mass tangential velocities during the trajectory correction phases 

when using the "rigid" trajectory control principle. 

Subject of research: The center of mass movement stabilization system in the transverse plane, which 

is used during the trajectory correction phases.In order the control actions could be created during the spacecraft 

trajectory correction phase, a high-thrust service propulsion system with a tilting or moving in linear direction 

combustion chamber shall be used. 

 

II. STATEMENT OF THE PROBLEM 
Improvement of control accuracy increases chances for successful implementation of the flight 

program. However, a significant reduction in the correcting impulse lateral error leads to reduction in fuel 

required for corrections, and thus increases the payload [5, 6]. The publication addresses spacecraft which use 

high- thrust PS for correcting impulses and control at active phases. During the active phase, the spacecraft shall 

be exposed to disturbances caused mainly by working PS. These disturbances create components of the 

spacecraft center of mass velocity in the normal and lateral directions (the drift velocity), and the spacecraft 

center of mass stabilization system is to provide center of mass lateral drift velocities close to zero during active 

phases. Since the time of the active phase ,T  which is determined by specified velocity impulse is not known 

and quite limited during correction maneuvers [7, 8] and in view of the fact that a guaranteed approach 

evaluating accuracy is always used to solve a guidance task in practice, in this publication, we shall understand 

the maximum dynamic error of the transition process  
maxmax

zy   with normal (lateral) drift velocity of the 

spacecraft  as the accuracy of spacecraft center of mass movement stabilization in transverse directions. 

Consequently, our purpose is to significantly increase stabilization accuracy of the spacecraft center of mass 

tangential velocities (reduction of the maximum dynamic error in the drift velocity of the spacecraft in the 

transition process). This shall be done by synthesis of highly accurate stabilization algorithms in the rigid 

trajectory control system on the trajectory correction phases outside the atmosphere when using high-thrust 

engines.  The spacecraft center of mass movement stabilization system in the normal (lateral) plane applied in 

the trajectory correction phases shall be the subject of research. A high-thrust sustainer PS provided either with 

deviating or linearly moving combustion chamber shall be used in the correction phase to control motions of the 

spacecraft [5].  
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III.  SYNTHESIS OF STABILIZATION ALGORITHMS IN THE SYSTEM                                                                                                                   

CONTROLLING ROTATIONS OF THE OPERATING DEVICE 
We study motions of the spacecraft in the normal plane of the inertial coordinate system XOY  (Fig. 1) 

[5]. The center O  of the inertial coordinate system at the beginning of the active phase is the same as the center 

of mass of the spacecraft; the axis OX  coincides with the direction of the required correction impulse ,
cor

V


  

axis OY  together with axis OX  form a normal plane. The angular position of the spacecraft in the normal plane 

is determined by an angle   between axis OX  of the inertial coordinate system and X- axis 
cc

XO  of the bound 

coordinate system. Control of the spacecraft in the active phase shall be done by deflection of combustion 

chamber of PS  at an angle   between X-axis 
cc

XO  of the spacecraft and X-axis of the nozzle symmetry of PS.  

 
Fig. 1. Spacecraft diagram in the inertial coordinate system 

 

The following assumptions and conditions were used in the process of synthesis of the 

stabilization algorithms [5]: 

1. We assume that the spacecraft is subject to disturbances in the active phase (force F  and moment ),M  which 

are mainly caused by working PS (tilt and thrust misalignment). Because of their nature, these parameters 

shall slowly change in time throughout the active phase (except for the period from the start of PS till 

switching to the nominal operation mode ).2.0 s  For this reason, the disturbances may be considered 

permanent within the active phase with a reasonable degree of accuracy: .; constMconstF   We shall 

consider the work of the stabilization system within the entire possible range of disturbances: 

maxmax
0;0 MMFF   (experience shows that the maximum force and moment are respectively about 

0.3
0
 and 3.5

0
 in the equivalent deviation angles of PS).  

2. The motion of the spacecraft is considered as movement of the absolute rigid body in vacuum relative to the 

reference trajectory in the normal plane of the inertial coordinate system. 

3. A high-thrust chemical engine is used to control the spacecraft in the active phase. Control is provided by 

deflecting PS combustion chamber. The servo control, which deflects the combustion chamber includes a 

feedback control actuator. 

To stabilize the angular position of the spacecraft we shall use the information about deviation of the 

spacecraft body-fixed axes from the axes of the inertial coordinate system implemented in the gyro stabilized 

platform (CST) on board the spacecraft and the angular velocity sensors (AVS). The information on the 

deviation of the tangential velocities shall be taken from the accelerometers installed on CSP. 

 

IV. MATHEMATICAL MODEL OF THE SPACECRAFT 

       OF MASS MOTION STABILIZATION SYSTEM 
Taking in consideration the above assumptions and suppositions we can set down a system of equations 

(1) describing the behavior of the spacecraft center of mass motion stabilization system under study: 















),( 









FBCMASCA

z

yyy

KyWWK

MC

FCCy







                                                                                                              

(1) 

where y  is the center of mass drift coordinate in the inertial coordinate system; 


CCC
yy

,,  are dynamic 

coefficients of the spacecraft; ,
m

P
CC

yy



 where P  is PS thrust, m  is mass of the spacecraft; 

,

z
I

Pl
C 


 where l  is the distance from the gimbal assembly of PS to the center of mass of the spacecraft, 


z

I  is momentum of inertia of the spacecraft relative to the axis 
c

z0  of the bound coordinate system; 
CA

K  is 
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a velocity performance index of the control actuator; 
FB

K  is a control actuator feedback index; 
AS

W  is a 

response function of the angular stabilization controller; 
CM

W  is a response function of the stabilization 

controller through the center of mass channel.According to the above mathematical model, a block diagram of 

the stabilization system under study shall be as follows (Fig.2) [5].In order to improve accuracy of stabilization 

while using synthesized algorithms, a model of a model of a standard stabilization system shall be made. It is to 

be used as a reference model for comparison. The standard stabilization model uses a known stabilization 

controller [8-10], which provides control proportionally to the angle ,  of the spacecraft angular rotation 

velocity in the normal plane ,  linear drift y  and the drift velocity .y  A block diagram of the standard 

stabilization system is shown in Fig. 3 [5]. 

 
Fig. 2. Block diagram of the spacecraft center of mass motion stabilization system under study 

 
 

Fig. 3. Block diagram of a standard center of mass motion stabilization system of a spacecraft 

 

V. METHOD TO SOLVE AN INVARIANT PROBLEM 
As mentioned above, usage of methods of the invariant theory [11-18] is seen as a way to improve the 

accuracy of the automatic regulation system. In the present case, it is not possible to synthesize the invariant 

stabilization system using the method of combined regulation, which is traditional for invariant systems because 

actual measurements of the disturbing effects are not available. However, publications [19, 20] observe that it is 

possible to build an invariant system without use of combined regulation methods, if we apply the principle of 

dual-channel impact distribution in the controlled object. The principle of dual-channel impact distribution 

resides in the fact that if the controlled object has two  distribution channels of the same impact, we may achieve 

mutual compensation of the impact transferred through the above channels by selecting a respective law of 

control so that the regulated value becomes invariant (independent) of the said impact. 
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VI.        PHYSICAL IMPLEMENTATION OF A STABILISATION SYSTEM  

INVARIANT TO THE DESTABILIZING FORCE AND TO THE DISTURBING MOMENT 
Let's consider the system of equations (1), which describes the system to be explored, the stabilization  

and the functional diagram (Fig 2) [5] in terms of the choice of response functions )(),( sWsW
CMAS

 and 

),( sK
FB

 providing invariance for coordinates y  under influence F  and .M  The values F  and M  cannot be 

measured directly as supposed in combined regulation systems. 

To analyze invariant conditions, we shall write equations (1) in operator form:  
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                                                                              (2) 

According to the basic provisions of the invariant theory [13-15] it is necessary that (2) to ensure 

invariance y  under influences F  and M  
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                                                                                                                                  (3) 

Whence ,0
FM

yy   where 
FM

yy   ,  are invariant minors, and   is the main determinant of the 

closed system (2). 

By substituting the determinants 
FM

yy   ,  in (3) and   from the equations (2) we shall have the 

following necessary invariance conditions in the operator form [21]: 
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whence  

.,

CA

FBAS

K

s
KW                                                                                                                                 (5) 

Rather than focusing so far on the meaning of the conditions obtained, let's consider the physical 

implementation of an invariant system providing the condition (4).We know that the requirement to ensure the 

open system's absolute invariance is a criterion for the physical implementation of the invariant system proposed 

by academician B. Petrov [22]. 

The expression for 
OS

  shall be as follows [21]: 
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It is easy to see that when conditions (5) are met, the expression (6) identically becomes zero, whence it follows 

that an absolutely invariant in moment M  and force F  system can't be implemented [21].Let's consider 

physical implementation of the system for each of the disturbances individually. 

 

VII.   PHYSICAL IMPLEMENTATION OF A STABILIZATION  

                 SYSTEM, WHICH IS INVARIANT UNDER DISTURBING MOMENT 
In order to ensure invariance of the coordinate y  under influence F  it is necessary that the condition 

0
M

y  is met, that is 

.0
1


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
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


 yAS
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FBy
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K
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It is obvious that in general the expression (6) doesn't become zero in case the invariance condition (7) 

is met, which makes it clear that the condition for physical implementation of the center of mass stabilization 

system under disturbance M  is met. 

We shall demonstrate that the transfer function of the open system under disturbing moment M is equal 

to zero if the invariance conditions are met. Hence .0y  Let’s write down an open system determinant: 
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The invariance minor 
21

  shall be obtained by cancellation of the first column and the second line in 

(8):  
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The open system transfer function shall be as follows under disturbing moment :M  
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Because 
21

  meeting the invariance conditions  (7) is zero, and 
21

  is a minor of absolute invariance, 

so ,0
M

W  and therefore .0 MWy
M

  It is not possible to achieve a minor value 
21

   exactly equal to zero, 

that is the actual value obtained y  can be  only close to zero [21]. It is significant that if the equality 

,0 
 yy

CC  and therefore the equality ,   are fulfilled, there are two channels for transmission of the 

same disturbance M  in the stabilization object itself, as can be seen from the block diagram (Fig. 3) [5] since 

 yy
CC   achieves absolute invariance under .M  

 

VIII. PHYSICAL IMPLEMENTATION OF THE STABILIZATION 

          SYSTEM, WHICH IS INVARIANT UNDER DESTABILIZING FORCE 
In order to ensure invariance of the coordinate y  under influence F it is necessary that the 

condition 0
F

y  is met, or 

.0
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 It is easy to see that the expression (11) is the same as the main determinant (8), if the system is open at 

.y  Consequently, when the condition of absolute invariance is met, the open system determinant becomes zero, 

indicating physical inability to implement absolute invariance of the system under influence .F   The  obtained 

results may be physically interpreted as follows: the system under consideration conforms to the principle of 

dual-channel impact transmission under disturbing moment ,M  while lacking such a characteristic under 

destabilizing force F [21]. 

 Fig. 3 [5] shows two channels transferring an impact from the origin of the disturbing moment M  to 

the controlled condition y , while there is only one channel between the origin of destabilizing force F  and the 

controlled condition y . This explains the earlier conclusion about the physical inability to implement a system 

which would be invariant both for ,M  and .F  

Therefore, an analysis of the possibility of an invariant stabilization system shows that such a system can be 

implemented only under one of the influences, i.e. disturbing moment [5, 21]. As this impact is a determining 

one, it is useful to consider a possibility to build such a system. 

 

IX. SYNTHESIS OF A STABILIZATION SYSTEM INVARIANT UNDER 

DISTURBING MOMENT 
Practical building of invariant systems shows that it is generally not possible to implement absolute 

invariant conditions. Likewise, in the case under consideration [21], it is evident that it is not possible to achieve 

the condition  0
1
















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FByM
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K
KCy . 

In such cases, it is usually a task to build a system partially invariant or invariant to the point of   

[22]. Having in mind that the object is subject to a slowly changing influence, we shall assume that disturbance 

is constM   and try to build a simple invariant system. In this case, we shall only compensate for the 
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disturbance itself ,constM   without claiming compensation of its derivatives. Meeting these requirements 

means that a free member in the expression for ,0
M

y  or 

,0
 yFBy

CkKC                                                                                                                            (12) 

where 


k  is the gain of the stabilization controller according to spacecraft angle of deflection. 

The relation (12) demonstrates that the feedback of the control actuator ensuring invariance shouldn't 

be negative as usually but a positive one (because the signs in the expression (12) correspond to the earlier 

assumption that a feedback sign should be negative) [21]. Its gain should be: 
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If ,
 yy

CC   direct signal gain and feedback gain must be equal, i.e. feedback coefficient for the 

control actuator shall be equal to 


kK
FB

  [5, 21]. 

To analyze stability of such a system, we shall analyze its characteristic equation. In accordance with 

above, we shall therefore assume that there are no measurements y , that is .0yW
CM

  So, the characteristic 

equation for the closed system subject to the invariance conditions will be: 
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Let 
AC

W  have a known form: ,
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delay of stabilization controller. Then the characteristic equation shall be as follows: 
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 The above relation (15) demonstrates that the characteristic equation of the closed system does not 

meet stability requirements as there appear members ),(
2

sWsk
AC



 with negative components. To 

compensate them it is necessary [21]: 

1. To enter second derivative action into the control mode .
2

sk


 

2. To enter equivalent delay block ),( sW
CA
  into the feedback loop of the control actuator. The equivalent delay 

block shall be written as a polynomial which denominator is minimum the order of the polynomial ).( sW
AC
   

After the above requirements have been satisfied, the characteristic equation shall be as follows:  
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The necessary condition for the system stability as follows from (16) is that ,


kCk 
 and the coefficients at 

corresponding members in a polynomial )( sW
CA
  should not be less than the coefficients of the polynomial 

).( sW
AC
   

 
 

Fig. 5. Block diagram of the center of mass stabilization system invariant under disturbing moment  
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The required stability conditions obtained are consistent with the known criteria in the invariant theory. 

According to them, the response rate of the loop, which guarantees invariance (here the actuator loop), must be 

not less than the response rate of the main loop.If the above condition is met providing the order of polynomial 

denominator in the loop of control actuator equivalent delay )( sW
CA
  equal to the order of polynomial ),( sW

AC
  

the invariant stabilization system shall be "rough" because execution of invariant conditions results in the 

degeneration of leading  members in the characteristic equation of the system, and thus a sufficient degree of 

stability can be achieved by selection of parameters in the control mode (Polynomial Block)[21].A block 

diagram of the center of mass stabilization system invariant under disturbing moment constM   is shown in 

Fig. 5. 

 

X. CONCLUSION 
By analyzing the invariant stabilization system you can draw the following conclusions: 

1. The stabilization system under consideration ensures invariance of the controlled variable y  only under one 

influence, i.e. disturbing moment .M  Since its influence has the greatest impact on the stabilization accuracy 

of the spacecraft center of mass, use of the proposed system plus normal center of mass stabilization channel 

which enables to introduce components proportional to velocity and the object drift coordinate  into the 

control mode can significantly improve the control accuracy .y  

2. The peculiarities of the system considered include the need to introduce equivalent delay loop into feedback 

of the control actuator, which in its turn results in the complexity of the control actuator design and the need 

to use positive feedback. 

 

REFERENCES 

[1] Deep Impact Launch, Press Kit, January, 2005, NASA, USA.        

[2] William H. Blume, Deep Impact Mission Design. Springler, Space Science Reviews, 2005, PP. 23-42.                                             

[3] Matt Taylor, The Rosetta mission, ESA, 2011.                               

[4] Verdant M., Schwehm G.H., The International Rosetta Mission, ESA Bulletin, February, 1998.                                                       

[5] Nickolay Zosimovych, Modeling of Spacecraft Centre Mass Motion Stabilization System. International 

Refereed Journal of Engineering and Science (IRJES), Volume 6, Issue 4 (April 2017), PP. 34-41. [132] 

[6] http://slideplayer.com/slide/10271715/ - Presentation on theme: "Japanese mission of the two moons of 

Mars with sample return from Phobos Hirdy Miyamoto (Univ. Tokyo) on behalf of MMX team NOTE 

ADDED BY JPL WEBMASTER"                                                      

[7] Сихарулидзе Ю.Г., Баллистика летательных аппаратов. М.: Наука, 1982, 351 с. // Siharulidze 

Yu.G., Flying vehicles ballistics. Moscow: Science, 1982, 351 pp.                                                                           

[8] Аппазов Р.Ф., Лавров С.С., Мишин В.П. Баллистика управляемых ракет дальнего действия. М.: 

Наука, 1966, 308 с. // Appazov R.F., Lavrov S.S., Mishin V.P. Ballistics of controlled long range 

rockets. Moscow: Science, 1966, 308 pp.                          

[9] Jiann-Woei Jang, Abran Alaniz, Robert Hall, Nazareth Bedrossian, Charles Hall, Mark Jackson, Design 

of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool. AIAA Guidance, 

Navigation, and Control Conference, 08-11 August 2011, Portland, Oregon, USA, AIAA 2011-6652.   

[10] Могилевский В.Д., Наведение баллистических летательных аппаратов. M.: Наука, 1982, 352 с. 

//Mogilevsky V.D., Ballistic flying vehicle guidance. Moscow: Science, 1982, 352 pp.                                

[11] Alonzo Kelly, Modern Inertial and Satellite Navigation Systems. The Robotics Institute Carnegie Mellon 

University, CMU-RI-TR-94-15, 1994.                                                                                         

[12] Veniamin V. Malyshev, Michail N. Krasilshikov, Vladimir T. Bobronnikov, Victor D. Dishel, Aerospace 

vehicle control, Moscow, Moscow Aviation Institute MAI, 1996.                                            

[13] Bassam Bamieh, Fernando Paganini, Munther A. Dahleh, Distributed Control of Spatially Invariant 

Systems. IEEE Transactions on Automatic Control, Vol. 47, No. 7, July 2002, PP. 1091-1107.                       

[14] Щипанов Г.В., Теория и методы проектирования автоматических регуляторов. Автоматика и 

телемеханика, № 1, 1939. // Schipanov G.V., Theory and methods of automated devices design, No 1, 

1939.  

[15] Бейнарович В.А., Инвариантные системы автоматического управления с релейным усилителем. 

Доклады ТУСУРа, №2 (21), Часть 1, Июнь 2010, СС. 70-73.  // Beynarovitch V.A., Invariant systems 

of automatic control with relay amplifier. Proc. TUSUR, No2 (21), part 1, June 2010, PP. 70-73.                     

[16] Hennet J.C., Trabuco Dorea Carlos E., Invariant Regulators for Linear Systems under Combined Input 

and State Constraints. Proc. 33
rd

 Conf. of Decision and Control (IEEE-CDC’94), Lake Buena Vista, 

Florida USA, Vol. 2, pp. 1030-1036.                                                                    

http://slideplayer.com/slide/10271715/


Improving the Spacecraft Center of Mass Stabilization Accuracy 

International organization of Scientific Research                                                            14 | P a g e  

[17] Amaria Luca, Pedro Rodriguez, and Didier Dumur, Invariant sets method for state-feedback control 

design. 17
th

 Telecommunications forum TELEFOR 2009, Serbia, Belgrad, November 24-26, PP. 681-

684.  

[18] Gazanfar Rustamov, Invariant Control Systems of Second Order. IV International Conference “Problems 

of Cybernetics and Informatics” (PCI’2012), September 12-14, 2012, Baku, PP. 22-24.                    

[19] Кулебакин В.С., Теория инвариантности автоматически регулируемых и управляемых систем. – 

М.: Наука, 1960. // Kulebakin V.S. Invariant theory of automated regulated and controlled systems. – 

Moscow: Science, 1960.          

[20] Кулебакин В.С. Теория инвариантности в системах автоматического управления. – М.: Наука, 

1962. // Kulebakin V.S. Theory of invariants in automated control systems. - Moscow: Science, 1962.                     

[21] Nickolay Zosimovych. Increasing the Accuracy of the Center of Mass Stabilization of Space Probe. 

“Новината за Напреднали Наука - 2017”, XIII International Scientific and Practical Conference, May, 

15-22, 2017, Technical Science, Vol. 10. София, «Бял ГРАД-БГ» OOД. – PP. 31-37.                                                                                           

[22] Петров Б.Н. Современные методы проектирования систем автоматического управления. М.: 

Машиностроение, 1967, 704 с. // Petrov B.N. Contemporary methods of automatic control system 

design. Moscow: Mashinostroeniye, 1976, 704 pp.     

 

 

 

 

 

 

 

 

 

 


