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ABSTRACT:-This paper presents use of polynomial shape function in shear deformation theory for thick plate 

analysis. Total potential energy equation of a thick plate was formulated from the first principle. This  equation 

was subjected to direct variation to obtain three simultaneous direct governing equations for determination of 

displacement coefficients.  Shape (profile) equation for vertical shear stress through the thickness of the plate 

was formulated from the first principle. From this profile equation, the deformation line equation (called 

function of z or s) was obtained. This is the model from this study. A numerical problem for a rectangular plate 

simply supported around all the edges was used to test the sufficiency of this study. Both polynomial and 

trigonometric shape functions were used in this problem. Three other models were also used. The center 

deflection - w(0.5, 0.5, 0), in-plane normal x directed stress   x(0.5, 0.5, 0.5) and x directed vertical shear stress   

xz(0, 0.5, 0) from the present study for span-depth ratio of 4 of a square plate using polynomial shape function 

are 0.0055 qa
4
/D, 0.03 tqa

2
/D and 0.00149 qa

3
/D. D is plate flexural rigidity, t is plate thickness, q is the 

uniformly distributed normal load on plate and a is the primary span of the plate. When Trigonometric shape 

function is used, the values are 0.0056 qa
4
/D, 0.031 tqa

2
/D and 0.00147 qa

3
/D. These are comparable with the 

value from Pagano (Exact): 0.0052 qa
4
/D, 0.0281 tqa

2
/D and 0.00117 qa

3
/D. It is observed that at span-depth 

ratio of up to 100 the values based on all the models used herein coincide with the Classical plate theory (CPT) 

values. The values of from CPT based on polynomial shape function are 0.00414 qa
4
/D, 0.0283 tqa

2
/D and 0.00 

qa
3
/D. 

 

Keywords: shear deformation, vertical shear stress, stress, deflection, displacement, potential energy 

shape function 

 

I. INTRODUCTION 
Refined plate theories have been characterized by the use of trigonometric displacement function. Many 

scholars have obtained the closed form solutions and others have obtained approximate solution by use of 

energy method. However, one thing is common in them all - the use of trigonometric displacement functions to 

approximate the deformed shapes of the plates.  (Chikalthankar et al., 2013; Sayyad, 2011; Akavci, 2007; 

Sayyad and Ghugal, 2012; Sadrnejad et al., 2009; Daouadji et al.,2013;Hashemi and Arsanjani, 2005; Reddy, 

2014; Shimpi and Patel, 2006; Murthy, 1981; Daouadji, Tounsi, Hadji,  Henni and El Abbes, 2012; Zhen-qiang, 

Xiu:xi and Mao-guang, 1994). Others have applied the polynomial displacement functions in numerical methods 

like finite element method and differential quadrature element methods (Matikainen, Schwab and Mikkola, 

2009;Goswami and Becker, 2013, Liu, 2001). In the course of development of refined plate theory, the 

assumption that the shear deformation line is not varying linear with depth of the plate was introduced. This 

according to many scholars helps to ensure that the vertical shear stress across the plate section does not remain 

constant, but varies parabolically with zero values at both the top and bottom surfaces (Kruszewski, 1949; 

Ambartsumian, 1958 Krishna, 1984; Touratier, 1991; Karama and Mistou, 2003; Sayyad, 2011). They came up 

with different shear deformation line functions, here-in-after called F(z). However, there F(z) were not strictly 

based on the vertical shear stress mathematical formulation. If we follow the work of Timoshenko (Timoshenko 

and Woinowsky-krieger, 1970), we shall note that maximum shear stress occurs at the mid surface (where z = 0) 

and the value of maximum shear stress is one and half of vertical shear stress. With most of the F(z) from the 

literature, we may obtain good profile (curve) for the deformation line and shear stress distribution across the 

section, but the mid surface value of shear stress may not coincide with that from Timoshenko. Thus, the two 

specific objectives of the present study include 

i. To develop a direct governing simultaneous equations for thick plate analysis 

ii. To formulation of a polynomial F(z) mathematical in line with works of Timoshenko 

iii. To use polynomial displacement functions variational calculus analysis. 
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II. ASSUMPTIONS 
i. The displacements, u, v and w are small when compared with plate thickness. 

ii. The in-plane displacements, u and v are differentiable in x, y and z axes, while the out-of-plane 

displacement (deflection), w is only differentiable in x and y axes. This means that the first derivative 

of w with respect to z is zero. Consequently, z = 0. 

iii. The effect of the out-of-plane normal stress on the gross response of the plate is small when compared 

with other stresses. Thus, it can be neglected. That is z = 0. 

iv. The vertical line that is initially normal to the middle surface of the plate before bending is no longer 

straight nor normal to the middle surface after bending. That is       ≠ c. where  is the total rotation 

of the middle surface in this case, c is the classical plate theorem rotation of the middle surface.  

 

III. KINEMATIC RELATIONS 
The refined plate theory (RPT) in-plane displacements, u and v as presented on figure 1are defined 

mathematically as 

𝑢 = 𝑢𝑐 + 𝑢𝑠                                      (1) 

𝑣 = 𝑣𝑐 + 𝑣𝑠                                       (2) 

 

Where u and v are in-plane displacements in x and y directions respectively. 

The classical in-plane displacements are commonly defined as: 

𝑢𝑐 = −𝑧𝜃𝑐𝑥 = 𝑧
𝑑𝑤

𝑑𝑥
                     (3) 

𝑣𝑐 = −𝑧𝜃𝑐𝑦 = 𝑧
𝑑𝑤

𝑑𝑦
                      (4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Deformation of a section of a thick plate 
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Analogously, the shear deformation components of the in-plane displacements are defined as: 

𝑢𝑠 = 𝐹(𝑧)𝜃𝑠𝑥                                 (5) 

𝑣𝑠 = 𝐹(𝑧)𝜃𝑠𝑦                                 (6) 

NoteF(z) is used instead of z. This is because of the fourth assumption (see figure 1). Let us define the 

deflection (out-of-plane displacement), w as: 

𝑤 = 𝑐1ℎ                                   (7) 

Substituting equation (7) into equations (3) and (4) gives respectively: 

𝑢𝑐 = −𝑧
𝑑

𝑑𝑥
 𝑐1ℎ = −𝑧𝑐1

𝑑ℎ

𝑑𝑥
                 (8) 

𝑣𝑐 = −𝑧
𝑑

𝑑𝑦
( 𝑐1ℎ) = −𝑧𝑐1

𝑑ℎ

𝑑𝑦
                 (9) 

Let us mimic expressions in equations (8) and (9) rewrite equations (5) and (6) as: 

𝑢𝑠 = 𝐹(𝑧)𝑐2

𝑑ℎ

𝑑𝑥
                                      (10) 

𝑣𝑠 = 𝐹(𝑧)𝑐3

𝑑ℎ

𝑑𝑦
                                       (11) 

Where c1, c2 and c3 are coefficients of deflection (w), shear deformation rotations (sx and sy). 

Substituting equations (3) and (10) into equation (1) gives: 

𝑢 =  −𝑐1𝑧 +  𝑐2𝐹(𝑧) 
𝑑ℎ

𝑑𝑥
              (12) 

Similarly, substituting equations (4) and (11) into equation (2) gives: 

𝑣 =  −𝑐1𝑧 + 𝑐3𝐹(𝑧) 
𝑑ℎ

𝑑𝑦
            (13) 

Strain - Displacement Relations 

It was assumed that z is equal to zero. Thus, the remaining five engineering strain components are defined as: 

𝑥  =  
𝑑𝑢

𝑑𝑥
=  −𝑐1𝑧 + 𝑐2𝐹(𝑧) 

𝑑2ℎ

𝑑𝑥2
    (14) 

 

 

𝑦  =  
𝑑𝑣

𝑑𝑦
=  −𝑐1𝑧 + 𝑐3𝐹(𝑧) 

𝑑2ℎ

𝑑𝑦2
    (15) 

 


𝑥𝑦

 =  
𝑑𝑢

𝑑𝑦
+

𝑑𝑣

𝑑𝑥
=  −𝑐1𝑧 + 𝑐2𝐹(𝑧) 

𝑑2ℎ

𝑑𝑥𝑑𝑦
+  −𝑐1𝑧 + 𝑐3𝐹(𝑧) 

𝑑2ℎ

𝑑𝑥𝑑𝑦
 

=  −2𝑐1𝑧 + 𝑐2𝐹 𝑧 + 𝑐3𝐹(𝑧) 
𝑑2ℎ

𝑑𝑥𝑑𝑦
   (16) 

 


𝑥𝑧

 =  
𝑑𝑢

𝑑𝑧
+

𝑑𝑤

𝑑𝑥
 

=  −𝑐1 + 𝑐2

𝑑𝐹 𝑧 

𝑑𝑧
 
𝑑ℎ

𝑑𝑥
+ 𝑐1

𝑑ℎ

𝑑𝑥
 

That is 


𝑥𝑧

= 𝑐2

𝑑𝐹 𝑧 

𝑑𝑧

𝑑ℎ

𝑑𝑥
                                  (17) 

 


𝑦𝑧

 =  
𝑑𝑣

𝑑𝑧
+

𝑑𝑤

𝑑𝑦
 

=  −𝑐1 + 𝑐3

𝑑𝐹 𝑧 

𝑑𝑧
 
𝑑ℎ

𝑑𝑦
+ 𝑐1

𝑑ℎ

𝑑𝑦
 

That is 


𝑦𝑧

= 𝑐3

𝑑𝐹 𝑧 

𝑑𝑧

𝑑ℎ

𝑑𝑦
                                  (18) 

 

IV. CONSTITUTIVE RELATIONS 
It was assumed that z is equal to zero. Thus, the remaining five stress components are defined as:  
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𝑥  =  
𝐸

1 − 2
 𝑥 +  𝑦                        (19) 

 

𝑦  =  
𝐸

1 − 2
 

𝑥
+ 𝑦                       (20) 

 

𝑥𝑦  =  
𝐸(1 − )

1 − 2

𝑥𝑦

                               (21) 

𝑥𝑧  =  
𝐸(1 − )

1 − 2

𝑥𝑧

                               (22) 

 

𝑦𝑧  =  
𝐸(1 − )

1 − 2

𝑦𝑧

                              (23) 

 

V. STRESS – DISPLACEMENT EQUATIONS 
Substituting equations (14) to (18) into equations (19) to (23) where appropriate gives: 

𝑥  =  
𝐸

1 − 2
  −𝑐1𝑧 + 𝑐2𝐹(𝑧) 

𝑑2ℎ

𝑑𝑥2
+   −𝑐1𝑧 + 𝑐3𝐹(𝑧) 

𝑑2ℎ

𝑑𝑦2
                     (24) 

 

𝑦  =  
𝐸

1 − 2
 𝑧  𝑐1 +

𝐹(𝑧)

𝑧
𝐵2 

𝑑2ℎ

𝑑𝑥2
+  −𝑐1𝑧 + 𝑐3𝐹(𝑧) 

𝑑2ℎ

𝑑𝑦2
                     (25) 

 

𝑥𝑦  =  
𝐸(1 − )

2 1 − 2 
 −2𝑐1𝑧 + 𝑐2𝐹 𝑧 + 𝑐3𝐹(𝑧) 

𝑑2ℎ

𝑑𝑥𝑑𝑦
                                  (26) 

 

𝑥𝑧  =  
𝐸(1 − )

2 1 − 2 
𝑐2

𝑑𝐹 𝑧 

𝑑𝑧

𝑑ℎ

𝑑𝑥
       (27) 

 

𝑦𝑧  =  
𝐸(1 − )

2 1 − 2 
𝑐3

𝑑𝐹 𝑧 

𝑑𝑧

𝑑ℎ

𝑑𝑦
       (28) 

 

 

VI. TOTAL POTENTIAL ENERGY 
Total potential energy is the summation of strain energy, U and external work, V. that’s  

 =  𝑈 + 𝑉                                         (29) 
Let’s define external work as: 

𝑉 =  −𝑞  𝑤
𝑦𝑥

𝑑𝑥𝑑𝑦                 (30) 

Let’s also define strain energy mathematically: 

𝑈 =      . 𝑑𝑧

𝑡

2

−
𝑡

2

 
𝑦𝑥

𝑑𝑥𝑑𝑦 

 =       𝑥𝑥 + 𝑦𝑦 + 𝑥𝑦 𝑥𝑦 + 𝑥𝑧 𝑥𝑧 + 𝑦𝑧 𝑦𝑧  𝑑𝑧

𝑡

2

−
𝑡

2

 
𝑦𝑥

𝑑𝑥𝑑𝑦    (31) 

Using equations (14) and (24), (15) and (25), (16) and (26), (17) and (27), and (18) and (28) respectively gives: 

𝑥𝑥 =  
𝐸

1 − 2
  𝑧2𝑐1

2 − 2𝑐1𝑐2𝑧𝐹(𝑧) + 𝑐2
2𝐹(𝑧)2  

𝑑2ℎ

𝑑𝑥2
 

2

+  𝑧2𝑐1
2 − 𝑐1𝑐2𝑧𝐹 𝑧 − 𝑐1𝑐3𝑧𝐹(𝑧) + 𝑐2𝑐3𝐹(𝑧)2  

𝑑2ℎ

𝑑𝑥𝑑𝑦
 

2

   (32) 
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𝑦𝑦 =  
𝐸

1 − 2
  𝑧2𝑐1

2 − 2𝑐1𝑐3𝑧𝐹(𝑧) + 𝑐3
2𝐹(𝑧)2  

𝑑2ℎ

𝑑𝑦2
 

2

+  𝑧2𝑐1
2 − 𝑐1𝑐2𝑧𝐹 𝑧 − 𝑐1𝑐3𝑧𝐹(𝑧) + 𝑐2𝑐3𝐹(𝑧)2  

𝑑2ℎ

𝑑𝑥𝑑𝑦
 

2

   (33) 

𝑥𝑦 . 
𝑥𝑦

 =  
𝐸(1 − )

2 1 − 2 
 4𝑐1

2𝑧2 − 4𝑐1𝑐2𝑧𝐹 𝑧 − 4𝑐1𝑐3𝑧𝐹 𝑧 + 𝑐2
2𝐹(𝑧)2 + 2𝑐2𝑐3𝐹(𝑧)2

+ 𝑐3
2𝐹(𝑧)2  

𝑑2ℎ

𝑑𝑥𝑑𝑦
 

2

                   (34) 

𝑥𝑧 . 
𝑥𝑧

 =  
𝐸(1 − )

2 1 − 2 
𝑐2

2  
𝑑𝐹(𝑧)

𝑑𝑧
 

2

 
𝑑ℎ

𝑑𝑥
 

2

           (35) 

 

𝑦𝑧 . 
𝑦𝑧

 =  
𝐸(1 − )

 1 − 2 
𝑐3

2  
𝑑𝐹(𝑧)

𝑑𝑧
 

2

 
𝑑ℎ

𝑑𝑦
 

2

          (36) 

 

Substituting equations (32) to (36) into equation (31) gives: 

𝑈 =  
𝐷

2
  [

𝑦𝑥

𝑔1𝑐1
2 − 2𝑔2𝑐1𝑐2 + 𝑔3𝑐2

2]  
𝑑2ℎ

𝑑𝑥2
 

2

 

 

+  2𝑔1𝑐1
2 − 2𝑔2𝑐1𝑐2 − 2𝑔2𝑐1𝑐3 +

1

2
𝑔3𝑐2

2 + 𝑔3𝑐2𝑐3 +
1

2
𝑔3𝑐3

2  
𝑑2ℎ

𝑑𝑥𝑑𝑦
 

2

 

 

+  𝑔3𝑐2𝑐3 −
1

2
𝑔3𝑐2

2 −
1

2
𝑔3𝑐3

2  
𝑑2ℎ

𝑑𝑥𝑑𝑦
 

2

 

 

 

+ 𝑔1𝑐1
2 − 2𝑔2𝑐1𝑐3 + 𝑔3𝑐3

2  
𝑑2ℎ

𝑑𝑦2
 

2

 

 

 

+(1 − )
𝛼2

2
𝑔4𝑐2

2  
𝑑ℎ

𝑑𝑥
 

2

 

 

 

+ 1 −  
𝛼2

2
𝑔4𝐵3

2  
𝑑ℎ

𝑑𝑦
 

2

] 𝑑𝑥𝑑𝑦  (37) 

 

Where: 

𝐷 =
𝑡3

12
 

𝑔1 =

  𝑧2𝑑𝑧
𝑡

2

−
𝑡

2

 

𝐷 
  = 1        (38) 

 

 

𝑔2 =

  𝑧𝐹 𝑧 𝑑𝑧
𝑡

2

−
𝑡

2

 

𝐷 
          (39) 

𝑔3 =

  𝐹(𝑧)2𝑑𝑧
𝑡

2

−
𝑡

2

 

𝐷 
(40) 
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𝛼2𝑔4 =

   
𝑑𝐹(𝑧)

𝑑𝑧
 

2

𝑑𝑧
𝑡

2

−
𝑡

2

 

𝐷 
(41) 

The flexural rigidity of the plate is: 

𝐷 =
𝐸

1 − 2
∗ 𝐷 =  

𝐸𝑡3

12(1 − 2)
(42) 

Let’s define the span-depth aspect ratio as 

 =
𝑎

𝑡
                                                  (43) 

Where a and t are the primary span (length in x direction, while b is the length in y direction) of the plate and 

plate thickness respectively. 

Let define non dimensional coordinates R and Q and the span-span aspect ratio, P as: 

𝑅 =
𝑥

𝑎
𝑥 = 𝑎𝑅                       (44) 

 

𝑄 =
𝑦

𝑏
𝑦 = 𝑏𝑄                    (45) 

 

𝑃 =
𝑏

𝑎
𝑏 = 𝑎𝑃                    (46) 

Substituting equations (30), (37) and (43) to (46)into equation (29) gives: 

 =
𝑎𝑏𝐷

2𝑎4
  [

1

0

1

0

𝑔1𝑐1
2 − 2𝑔2𝑐1𝑐2 + 𝑔3𝑐2

2]  
𝑑2ℎ

𝑑𝑅2
 

2

 

 

+
1

𝑃2
 2𝑔1𝑐1

2 − 2𝑔2𝑐1𝑐2 − 2𝑔2𝑐1𝑐3  
𝑑2ℎ

𝑑𝑅𝑑𝑄
 

2

 

(1 + 𝜇)

𝑃2
𝑔3𝑐2𝑐3  

𝑑2ℎ

𝑑𝑅𝑑𝑄
 

2

 

+
(1 − )

2𝑃2
 𝑔3𝑐2

2 + 𝑔3𝑐3
2  

𝑑2ℎ

𝑑𝑅𝑑𝑄
 

2

 

+
(1 − )𝛼2

2
𝑔4𝑐2

2  
𝑑ℎ

𝑑𝑅
 

2

 

+
(1 − )𝛼2

2𝑃2
𝑔4𝑐3

2  
𝑑ℎ

𝑑𝑄
 

2

] 𝑑𝑅𝑑𝑄 

−𝑎𝑏  𝐹𝐹
1

0

1

0

𝑑𝑅𝑑𝑄         (47) 

 

VII. DIRECT GOVERNING EQUATIONS 
This total potential energy contains three unknown coefficients (c1, c2 and c3) for deflection, rotation in x axis 

and rotation in y axis. Differentiating total potential energy equation with respect to c1, c2 and c3 in turn will give 

three simultaneous equations.  
𝑑

𝑑𝑐1

 =
𝑑

𝑑𝑐2

=
𝑑

𝑑𝑐3

= 0                (48) 

 

Substituting equation (47) into equation (48) gives in matrix form: 

 

 

𝑟11 𝑟12 𝑟13

𝑟12 𝑟22 𝑟23

𝑟13 𝑟23 𝑟33

  

𝑐1

𝑐2

𝑐3

 =
𝑎4

𝐷
 
𝐹𝑟𝑞
0
0

    (49) 

Where 

𝑟11 = 𝑔1(𝑘1 + 2
𝑘2

𝑃2
+

𝑘3

𝑃4
) 

 

𝑟12 = −𝑔2(𝑘1 +
𝑘2

𝑃2
) 
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𝑟13 = −𝑔2(
𝑘2

𝑃2
+

𝑘3

𝑃4
) 

 

𝑟22 = 𝑔3𝑘1 +
(1 − 𝜇)

2𝑃2
𝑔3𝑘2 +

(1 − )𝛼2

2
𝑔4𝑘4 

 

𝑟23 =
(1 + 𝜇)

2𝑃2
𝑔3𝑘2 

𝑟33 =
(1 − 𝜇)

2𝑃2
𝑔3𝑘2 +

1

𝑃4
𝑔3𝑘3 +

(1 − 𝜇)𝛼2

2𝑃2
𝑔4𝑘5 

 

𝑘1 =    
𝑑2ℎ

𝑑𝑅2
 

21

0

1

0

𝑑𝑅𝑑𝑄 

 

 

𝑘2 =    
𝑑2ℎ

𝑑𝑅𝑑𝑄
 

21

0

1

0

𝑑𝑅𝑑𝑄 

 

𝑘3 =    
𝑑2ℎ

𝑑𝑄2
 

21

0

1

0

𝑑𝑅𝑑𝑄 

 

𝑘4 =    
𝑑ℎ

𝑑𝑅
 

21

0

1

0

𝑑𝑅𝑑𝑄 

 

𝑘5 =    
𝑑ℎ

𝑑𝑄
 

21

0

1

0

𝑑𝑅𝑑𝑄 

 

𝐹𝑟𝑞 =   ℎ
1

0

1

0

𝑑𝑅𝑑𝑄 

 

SHEARING STRESS DISTRIBUTION IN RECTANGULAR CROSS-SECTIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: A rectangular cross section 

 

From strength of materials, the equation shear stress is given as: 

𝜏 =
𝑉𝐻

𝐼𝑏
                                        (50) 

Where V, H, I and b are transverse shear force, first moment of area, second moment of inertia and breadth of 

the section respectively. 

Using figure 2 and following mathematically principle the first moment of area is obtained: 

𝐻 =  𝑧𝑑𝐴 =
𝑏

2
 
𝑡

2
− 𝑧  

𝑡

2
+ 𝑧  

 

N.A 

𝑡

2
− 𝑧 

b 

z 

dA 

𝑡

2
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That is,𝐻 =
𝑏

2
 
𝑡2

4
− 𝑧2                              (51) 

 

The second moment of inertia for a rectangular section is given as: 

𝐼 =
𝑏𝑡2

12
                                            (52) 

 

Substituting equations (51) and (52) into equation (50) gives: 

𝜏 =
𝑉

𝑏𝑡
 

3

2
− 6

𝑧

𝑡2

2

 =
𝑉

𝑏𝑡
𝐺(𝑧)  (53) 

Where the shear stress profile, G(z) is: 

𝐺 𝑧 =  
3

2
− 6

𝑧

𝑡2

2

                       (54)  

It is assumed here that the shear stress profile, G(z) is related to shear deformation profile, F(z) as: 

 

 

𝐺 𝑧 =  
𝑑𝐹(𝑧)

𝑑𝑧
                                (55) 

 

Using equations (54) and (55) we obtain: 

 

𝐹 𝑧 =
3𝑧

2
 1 −

4

3
 
𝑧

𝑡
 

2

 (56) 

 

 

𝐹 𝑆 =
3𝑆𝑡

2
 1 −

4

3
𝑆2                 (56𝑏) 

Where S = z/t (a non-dimensional form of z) 

This function of z is exactly Krishna Murty Model (KrishnaMurty, 1984) divided by 1.5. However, using the 

Krishna Murty model will result in unestimating the vertical shear stress by 50%.  

Substituting F(S) models into equations (39) to (41) gives g1, g2, g3 and g4 values for different models used 

herein for numerical examples: 

i. Present Model 

𝐹 𝑆 =
3𝑆𝑡

2
 1 −

4

3
𝑆2  

𝑔1 = 1; 𝑔2 = 1.2; 𝑔3 =
51

35
; 𝑔4 = 14.4 

 

ii. Touratier   1991 model 
 

𝐹 𝑆 =
𝑡

𝜋
sin⁡(𝜋𝑆) 

𝑔1 = 1; 𝑔2 = 0.774; 𝑔3 =
307

505
; 𝑔4 = 6 

 

iii. Karama et al.  2003 model 
𝐹 𝑆 = 𝑆𝑡. exp⁡(−2𝑆2) 

𝑔1 = 1; 𝑔2 =
344

439
; 𝑔3 =

274

422
; 𝑔4 = 6.18744 

 

VIII. DEFINITION OF SOME QUANTITIES 

Recall equation 7: 

𝑤 = 𝑐1ℎ                       (7) 

 

Let us rewrite it as: 

𝑤 = 𝑐1ℎ = 𝐵1ℎ  
𝑞𝑎4

𝐷
 =  𝑘𝑤  

𝑞𝑎4

𝐷
  

 

This implies that: 
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𝑘𝑤 = 𝐵1ℎ𝑎𝑛𝑑𝐵1 =
𝑐1

 
𝑞𝑎4

𝐷
 
 

Let the displacements of plate under pure bending then be defined as: 

𝑤 =  
𝑞𝑎4

𝐷
 𝑘𝑤                                (56) 

𝑢 =  
𝑡𝑞𝑎3

𝐷
 𝑘𝑢                                (57) 

𝑣 =  
𝑡𝑞𝑎3

𝐷
 𝑘𝑣                                (58) 

Where kw, a and D are as defined earlier, q is the uniform distributed load on the plate. 

ku and kv are extracted from equations (12) and (13) as: 

𝑘𝑢 =  −𝐵1𝑆 + 𝐵2𝐹(𝑆) 
𝑑ℎ

𝑑𝑅
              (59) 

𝑘𝑣 =
1

𝑃
 −𝐵1𝑆 +  𝐵3𝐹(𝑆) 

𝑑ℎ

𝑑𝑄
            (60) 

𝑊ℎ𝑒𝑟𝑒𝐵2 =
𝑐2

 
𝑞𝑎4

𝐷
 
𝑎𝑛𝑑𝐵3 =

𝑐3

 
𝑞𝑎4

𝐷
 
 

Similarly, let us define the stress components as: 

𝜎𝑥 =
𝐸

1 − 𝜇2
 
𝑡𝑞𝑎2

𝐷
 𝑘𝜎𝑥

                   (61) 

𝜎𝑦 =
𝐸

1 − 𝜇2
 
𝑡𝑞𝑎2

𝐷
 𝑘𝜎𝑦

                   (62) 

𝜏𝑥𝑦 =
𝐸

1 + 𝜇
 
𝑡𝑞𝑎2

𝐷
 𝑘𝜏𝑥𝑦                    (63) 

𝜏𝑥𝑧 =
𝐸

1 + 𝜇
 
𝑞𝑎3

𝐷
 𝑘𝜏𝑥𝑧                    (64) 

𝜏𝑦𝑧 =
𝐸

1 + 𝜇
 
𝑞𝑎3

𝐷
 𝑘𝜏𝑦𝑧                    (65) 

Where kx, ky, kτxy, kτxz and kτyz are defined from equations (24) to (28)as: 

𝑘𝜎𝑥
=  −𝐵1𝑆 + 𝐵2𝐹 𝑆  

𝑑2ℎ

𝑑𝑅2
+ 



𝑃2
 −𝐵1𝑆 + 𝐵3𝐹(𝑆) 

𝑑2ℎ

𝑑𝑄2
               (66) 

𝑘𝜎𝑌
=  −𝐵1𝑆 + 𝐵2𝐹 𝑆  

𝑑2ℎ

𝑑𝑅2
+ 

1 

𝑃2
 −𝐵1𝑆 + 𝐵3𝐹(𝑆) 

𝑑2ℎ

𝑑𝑄2
               (67) 

𝑘𝜏𝑥𝑦
=

1

2𝑃
 −2𝐵1𝑆 + 𝐵2𝐹 𝑆 + 𝐵3𝐹(𝑆) 

𝑑2ℎ

𝑑𝑅𝑑𝑄
      (68) 

𝑘𝜏𝑥𝑧 =
𝐵2

2

𝑑𝐹 𝑆 

𝑑𝑆

𝑑ℎ

𝑑𝑅
                           (69) 

𝑘𝜏𝑦𝑧 =
𝐵3

2𝑃

𝑑𝐹 𝑆 

𝑑𝑆

𝑑ℎ

𝑑𝑄
                           (70) 

Substituting equations (42) and (43) into equations (56) to (58) gives: 

𝑤 = 12(1 − 𝜇2)3𝑘𝑤  
𝑞𝑎

𝐸
               (71) 

𝑢 = 12(1 − 𝜇2)3𝑘𝑢  
𝑡𝑞

𝐸
                  (72) 

𝑣 = 12(1 − 𝜇2)3𝑘𝑣  
𝑡𝑞

𝐸
                  (73) 

Similarly, substituting equations (42) and (43) into equations (61) to (65) gives: 

𝜎𝑥 = 𝑘𝜎𝑥
 122 𝑞                              (74) 

𝜎𝑦 = 𝑘𝜎𝑦
 122 𝑞                              (75) 

𝜏𝑥𝑦 = 𝑘𝜏𝑥𝑦
 122(1 − 𝜇) 𝑞          (76) 
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𝜏𝑥𝑧 = 𝑘𝜏𝑥𝑧
 123(1 − 𝜇) 𝑞           (77) 

𝜏𝑦𝑧 = 𝑘𝜏𝑦𝑧
 123(1 − 𝜇) 𝑞          (78) 

Let us define non-dimensional form of the displacements and stress components according to Sayyad et al. 

(2012) as: 

𝑤 =  
100𝐸𝑤

𝑞𝑡4
 79 ;     𝑢 =

𝑢𝐸

𝑞𝑡3
 80  

𝑣 =
𝑣𝐸

𝑞𝑡3
 81 ;  𝜎 𝑥 =

𝜎𝑥

𝑞2
 82  

𝜎 𝑦 =
𝜎𝑦

𝑞2
 83 ;    𝜏 𝑥𝑦 =

𝜏𝑥𝑦

𝑞2
 84  

𝜏 𝑥𝑧 =
𝜏𝑥𝑧
𝑞

 85 ;  𝜏 𝑦𝑧 =
𝜏𝑦𝑧

𝑞
 86  

Using equations (71) to (78), we define the non-dimensional form of the displacements and stress components 

as: 

𝑤 =  1200 1 − 𝜇2 𝑘𝑤 87  

𝑢 = 12 1 − 𝜇2 𝑘𝑢 88  

𝑣 = 12 1 − 𝜇2 𝑘𝑣 89  

𝜎 𝑥 = 12𝑘𝜎𝑥
 90  

𝜎 𝑦 = 12𝑘𝜎𝑦
 91  

𝜏 𝑥𝑦 = 12 1 − 𝜇 𝑘𝜏𝑥𝑦
 92  

𝜏 𝑥𝑧 = 122 1 − 𝜇 𝑘𝜏𝑥𝑧
 93  

𝜏 𝑦𝑧 = 122 1 − 𝜇 𝑘𝜏𝑦𝑧
 94  

 

IX. NUMERICAL PROBLEM 

Determine the deflection at the center (0.5, 0.5, 0) of ssss thick plate. Where (0.5, 0.5, 0) means R = 0.5; Q = 

0.5; S = 0. Determine also the in-plane normal stresses at (0.5, 0.5, 0.5), in-plane shear stress at (0, 0, 0.5) and 

the vertical shear stress (xz) at (0, 0.5, 0) of thessss plate. Polynomial and trigonometric displacement shall be 

used. Function. 

The polynomial displacement function, h is given as: 

ℎ =  𝑅 − 2𝑅3 + 𝑅4  𝑄 − 2𝑄3 + 𝑄4      (57) 
The trigonometric displacement function, h is given as: 

ℎ = sin 𝜋𝑅 sin 𝜋𝑄            (58) 

The k values for both polynomial and trigonometric functions are given on table 1. 

 

Table 1: The values of k and Frq for polynomial and trigonometric functions 

 Polynomial Trigonometry 

k1 0.23621 24.352273 

k2 0.23591 24.35227 

k3 0.23621 24.35227 

k4 0.0239 2.467401 

k5 0.0239 2.467401 

Frq 0.04   92/227 

 

X. RESULTS AND DISCUSSIONS 

A close look at tables 1 to 8 reveals that the values from the polynomial and trigonometric shape functions of 

the present study are quite close to each other. The recorded difference is attributed to the fact that the two shape 

functions are only approximations of each other. Two of them are not exactly the same. Furthermore, it is 

revealed that the values from trigonometric shape function based on the model of present study agree very well 

with the values based on Krishna model. However, a critical observation of the values reveals that the values 

from different models are very good approximation of one another. Table 3, 4, 7 and 8 showed that at span-

depth ratio of up to 100 and above, the values obtained from the models used herein coincide exactly with 

values from CPT. This is quite expected since we assumed in CPT analyses that at span-depth ratios of up to 

100, a plate can be taking as being thin. Hence, the model derived herein is quite sufficient for thick plate 

(refined plate theory) analyses. It shall also be deduced that polynomial shape functions are also adequate for 

thick plate analyses. Most works on thick plate analyses revolve around use of trigonometric shape function and 

some other functions. 
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Table 2: Non dimensional parameters for a/t = 4 

a/b = 1 𝑢  𝑤  𝜎𝑥    𝜎𝑦    𝜏𝑥𝑦     𝜏𝑥𝑧     

Present (P)  -0.0765 6.1044 0.3279 0.3279 -0.1883 0.3906 

Present (T)  -0.0755 6.1383 0.3390 0.3390 -0.1826 0.3854 

Karama (T) -0.0769 6.1035 0.3452 0.3452 -0.1859 0.3849 

Touratier (T) -0.0758 6.1342 0.3402 0.3402 -0.1832 0.3973 

Krishna (T) -0.0756 6.1483 0.3392 0.3392 -0.1826 0.3878 

Pagano (Exact) 0.0720 5.6940 0.3070 - - 0.3067 

CPT (P) -0.0723 4.5175 0.3098 0.3098 -0.1779 0.0000 

CPT (T) -0.0071 4.5434 0.3203 0.3203 -0.1725 0.0000 

Legend: (P) means the shape function is polynomial 

(T) means the shape function is trigonometry 

 

Table 3: Non dimensional parameters for a/t = 10 

a/b = 1 𝑢  𝑤  𝜎𝑥    𝜎𝑦    𝜏𝑥𝑦     𝜏𝑥𝑧     

Present (P)  -0.0730 4.7723 0.3127 0.3127 -0.1796 0.3920 

Present (T)  -0.0720 4.7995 0.3233 0.3233 -0.1741 0.3868 

Karama (T) -0.0723 4.7970 0.3243 0.3243 -0.1746 0.3909 

Touratier (T) -0.0721 4.7991 0.3235 0.3235 -0.1742 0.3991 

Krishna (T) -0.0720 4.8011 0.3233 0.3233 -0.1741 0.3892 

Pagano (Exact) 0.0730 4.6390 0.2890 - - 0.3247 

CPT (P) -0.0723 4.5175 0.30977 0.30977 -0.17792 0.0000 

CPT (T) -0.0714 4.5434 0.3203 0.3203 -0.1725 0.0000 

 

Table 4: Non dimensional parameters for a/t = 100 

a/b = 1 𝑢  𝑤  𝜎𝑥    𝜎𝑦    𝜏𝑥𝑦     𝜏𝑥𝑧     

Present (P)  -0.0723 4.5201 0.3098 0.3098 -0.1779 0.3920 

Present (T)  -0.0714 4.5460 0.3203 0.3203 -0.1725 0.3868 

Karama (T) -0.0714 4.5460 0.3203 0.3203 -0.1725 0.3909 

Touratier (T) -0.0714 4.5460 0.3203 0.3203 -0.1725 0.3991 

Krishna (T) -0.0714 4.5460 0.3203 0.3203 -0.1725 0.3892 

CPT (P) -0.0723 4.5175 0.3098 0.3098 -0.1779 0.3247 

CPT (T) -0.0714 4.5434 0.3203 0.3203 -0.1725 0.0000 

 

Table 5: Non dimensional parameters for a/t = 1000 

a/b = 1 𝑢  𝑤  𝜎𝑥    𝜎𝑦    𝜏𝑥𝑦     𝜏𝑥𝑧     

Present (P)  -0.0723 4.5175 0.3098 0.3098 -0.1779 0.3923 

Present (T)  -0.0714 4.5435 0.3203 0.3203 -0.1725 0.3870 

Karama (T) -0.0714 4.5435 0.3203 0.3203 -0.1725 0.3921 

Touratier (T) -0.0714 4.5435 0.3203 0.3203 -0.1725 0.3994 

Krishna (T) -0.0714 4.5435 0.3203 0.3203 -0.1725 0.3895 

CPT (P) -0.0723 4.5175 0.3098 0.3098 -0.1779 0.0000 

CPT (T) -0.0714 4.5434 0.3203 0.3203 -0.1725 0.0000 
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Table 6:  Dimensional parameters for a/t = 4 

a/b = 1 u w x y τxy τxz 

 

tqa
3
/D qa

4
/D tqa

2
/D tqa

2
/D tqa

2
/D qa

3
/D 

Present (P)  -0.0070 0.00559 0.03003 0.03003 -0.0172 0.00149 

Present (T)  -0.0069 0.00562 0.03105 0.03105 -0.0167 0.00147 

Karama (T) -0.0070 0.00559 0.03161 0.03161 -0.0170 0.00147 

Touratier (T) -0.0069 0.00562 0.03115 0.03115 -0.0168 0.00152 

Krishna (T) -0.0069 0.00563 0.03106 0.03106 -0.0167 0.00148 

Pagano (Exact) 0.0066 0.00521 0.02811 - - 0.00117 

CPT (P) -0.0066 0.00414 0.02837 0.02837 -0.0163 0.00000 

CPT (T) -0.0065 0.00416 0.02933 0.02933 -0.0158 0.00000 

 

Table 7:  Dimensional parameters for a/t = 10 

a/b = 1 u w x y τxy τxz 

 

tqa
3
/D qa

4
/D tqa

2
/D tqa

2
/D tqa

2
/D qa

3
/D 

Present (P)  -0.0067 0.00437 0.02863 0.02863 -0.0164 0.00024 

Present (T)  -0.0066 0.00440 0.02961 0.02961 -0.0159 0.00024 

Karama (T) -0.0066 0.00439 0.02970 0.02970 -0.0160 0.00024 

Touratier (T) -0.0066 0.00439 0.02962 0.02962 -0.0160 0.00024 

Krishna (T) -0.0066 0.00440 0.02961 0.02961 -0.0159 0.00024 

Pagano (Exact) 0.0067 0.00425 0.02647 - - 0.00020 

CPT (P) -0.0066 0.00414 0.02837 0.02837 -0.0163 0.00000 

CPT (T) -0.0065 0.00416 0.02933 0.02933 -0.0158 0.00000 

 

Table8:Dimensional parameters for a/t = 100 

a/b = 1 u w x y τxy τxz 

 

tqa
3
/D qa

4
/D tqa

2
/D tqa

2
/D tqa

2
/D qa

3
/D 

Present (P)  -0.0066 0.00414 0.02837 0.02837 -0.0163 0.00000 

Present (T)  -0.0065 0.00416 0.02933 0.02933 -0.0158 0.00000 

Karama (T) -0.0065 0.00416 0.02934 0.02934 -0.0158 0.00000 

Touratier (T) -0.0065 0.00416 0.02933 0.02933 -0.0158 0.00000 

Krishna (T) -0.0065 0.00416 0.02933 0.02933 -0.0158 0.00000 

CPT (P) -0.0066 0.00414 0.02837 0.02837 -0.0163 0.00000 

CPT (T) -0.0065 0.00416 0.02933 0.02933 -0.0158 0.00000 

 

Table9:Dimensional parameters for a/t = 1000 

a/b = 1 u w x y τxy τxz 

 

tqa
3
/D qa

4
/D tqa

2
/D tqa

2
/D tqa

2
/D qa

3
/D 

Present (P)  -0.0066 0.00414 0.02837 0.02837 -0.0163 0.00000 

Present (T)  -0.0065 0.00416 0.02933 0.02933 -0.0158 0.00000 

Karama (T) -0.0065 0.00416 0.02933 0.02933 -0.0158 0.00000 

Touratier (T) -0.0065 0.00416 0.02933 0.02933 -0.0158 0.00000 

Krishna (T) -0.0065 0.00416 0.02933 0.02933 -0.0158 0.00000 

CPT (P) -0.0066 0.00414 0.02837 0.02837 -0.0163 0.00000 

CPT (T) -0.0065 0.00416 0.02933 0.02933 -0.0158 0.00000 
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