Study of The Stress-Strain State of The Shaking Conveyor Mechanism

Algazy Zhautyt, Sagadat Mederbekkyzy, Yerzhan Akimbek, Nauruzbek Narzulloyev, Kemel Boribekov

Kazakh National Research Technical University, Almaty 050013, Kazakhstan.

Abstract: In this paper is studied a vibratory conveyor that is placed on an elastic base. Using the closed contours method it was determined the system that needs to be solved to obtain graphical representation for the generalized coordinates determining the position of the mechanical system elements. The shaking conveyor represents the chase hanged or supported to the fixed section. The chase commits oscillating motions hereupon the cargo which is in the chase, migrates concerning to the chase. The nature of the flow and its parameters are determined by the nature of the oscillating committed by the chase. Justifying the dynamic parameters of the shaking conveyor and a study of the stress-strain state. Installation causes fluctuations fixed tray. Uniformly distributed load on the tray acts in each element of the mechanism. On the basis of the program APM structure 3D investigated the stress-strain state and determined movement of each link mechanism with results and calculations.

Key words: stress-strain state, vibrating conveyor, equation, APM structure 3D, differential equation.

I. INTRODUCTION

The big application in various fields of the industry was received by the vibrating conveyors applied to transportation of hot, poisonous, chemical aggressive cargoes by the supplement of complete tightness of their relocation [4], and also for transportation of the metallic cuttings damped with emulsion and oil, hot earth which has been beaten out from casting forms, small casting, foundry fusion mixture, etc. The vibrating conveyor represents the chase hanged or supported to the fixed section. The chase commits oscillating motions hereupon the cargo which is in the chase, migrates concerning to the chase [5-8]. The nature of the flow and its parameters are determined by the nature of the oscillating committed by the chase. Vibrating conveyors on the conditions of the chase flow and nature of cargo movement are subdivided on inertial (with variable and constant stress of cargo to the chase) in which [9] cargo under the influence of inertia force glides on the chase, and on vibrating in which cargo tears off the chase and migrates along the chase. The vibrating conveyors [1-3] are widely applied owing to a number of advantages in these latter days. The questions of the kinematic and dynamic study of the vibrating feeder intended for dosing of the fusion mixture loading of the melting furnaces of foundry production are considered in the presented work [11-16]. The principle of operation of the vibrating conveyor is described, and it is devoted the kinematic analysis of the action. The differential equation of the link move of the reduction of the vibrating conveyor is considered in the difference method (the approximate method) solutions of the equation of move of the vibrating conveyor is resulted [10]. It is devoted to the analysis of the equations solutions of conveyor move. Here tables of the results and relocation drawing and velocity of the leading link depending on time are resulted.

II. MATERIALS AND METHODS

It is the action of the III class. The crew BED basic crew from which there are three leads FE, AB, GD. The link OA is a leading link

<table>
<thead>
<tr>
<th>№</th>
<th>links</th>
<th>mass, kg</th>
<th>length units, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>$m_1 = 30$</td>
<td>$l_1 = 60$</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>$m_2 = 65$</td>
<td>$l_2 = 430$</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>$m_3 = 1160$</td>
<td>$l_3 = 1100$</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>$m_4 = 59$</td>
<td>$l_4 = 440$</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>$m_5 = 59$</td>
<td>$l_5 = 440$</td>
</tr>
</tbody>
</table>
This action has one axis of motion, therefore relocation, velocities and speed-up of the driven link and action dots are functions of the relocation, velocities and speed-up of the leading link. Therefore we will find analytical dependences between relocations, velocities and speed-up of the driven links and leading link. As the leading link enters into the rotational pair with the console we set function. By the solution of the action move problem with one degree of freedom we will use the equation of the action move of the engine aggregate. \[\varphi_s = \varphi_s(t) \]

\[I_k(\varphi_1) \frac{d\omega_1}{dt} = \frac{\omega_1^2}{2} \frac{d\varphi_1}{dt} = M_k - M_k \quad (1) \]

It is known to us dependence \[M_k(\omega) \] and \[M_k(\varphi_1) \]. We determine \[M_k(\varphi_1) \] the resulted moment of resistance forces from power equaling of the resulted moment of force resistance and the sum of powers of the moments[5] of resistance forces of operating in links E, D, F, G.

\[M_k \omega_1 = M_E \omega_1 + M_D \omega_5 \omega_1 + M_F \omega_1 + M_G \omega_1 \]

\[= M_E u_{41} + M_D u_{51} + M_F u_{41} + M_G u_{51} = 4 \cdot u_{41} M_k \]

Let’s find resulted moment of the flywheel actions \[I_k(\varphi_1) \] from equaling condition of kinematic energy of reduction link to the kinematic energy sum of all links of the action.

\[I_k(\varphi_1) = I_{s1} + m_1g_s \frac{s_{2p1}}{2} + I_{s2} u_{21}^2 + m_3g_s \frac{s_{3p1}}{2} + (I_{4F} + I_{5G}) \cdot \frac{l_4^2}{4} \quad (2) \]

We determine inertia moments of the first, second, fourth and fifth links.

\[I_{s1} = m_1 \cdot \frac{l_1^2}{2} \]

\[I_{s2} = m_2 \cdot \frac{l_2^2}{2} \]

\[I_{4F} = I_{s4} + m_4 \cdot l_4' = m_4 \cdot \frac{l_4^2}{2} + m_4 \cdot \frac{l_4^2}{4} \]

\[I_{5G} = I_{s5} + m_5 \cdot l_5' = m_5 \cdot \frac{l_5^2}{2} + m_5 \cdot \frac{l_5^2}{4} \]

We differentiate the resulted inertia moment on \[\varphi_1 \]; For this purpose we substituted all above found values in the equation.
The move equation of the reduction link of the action looks like:

\[
\begin{align*}
& 1_{x_{1}} + m_{s} \cdot \omega_{s} \left[\left(l_{1} \sin \varphi_{s} + l_{z} \sin \varphi_{s} \cdot u_{z} \right) \right] + l_{z} \sin \varphi_{s} \frac{d}{dt} \left(\varphi_{s} - \varphi_{1} \right) \\
& + m_{s} \cdot \omega_{s} \left[-l_{1} \sin \varphi_{s} - l_{z} \sin \varphi_{s} \cdot u_{z} + a \cdot u_{z} \cdot \cos \varphi_{s} \right] + l_{z} \sin \varphi_{s} \frac{d}{dt} \left(\varphi_{s} - \varphi_{1} \right) \\
& + l_{z} \sin \varphi_{s} \frac{d}{dt} \left(\varphi_{s} - \varphi_{1} \right) \\
& = \left(l_{1} \cos \varphi_{s} + l_{z} \cos \varphi_{s} \cdot u_{z} \right) \right] + l_{z} \sin \varphi_{s} \frac{d}{dt} \left(\varphi_{s} - \varphi_{1} \right) \\
& + 2 \cdot l_{z} \sin \varphi_{s} \frac{d}{dt} \left(\varphi_{s} - \varphi_{1} \right) \\
& + \sin \varphi_{s} \frac{d}{dt} \left(\varphi_{s} - \varphi_{1} \right) \\
& = M_{s_{x}} - \alpha \cdot \omega_{s} - 4 u_{z} \left(M'_{s} + K_{s} \varphi_{s} \right) \quad (3)
\end{align*}
\]

For solution of the Eq.(3) there are following initial conditions: at \(t = 0 \), \(\omega_{s} = 0 \), \(\varphi_{s} = 60^\circ \)
III. THE APPROXIMATE METHOD OF THE EQUATION SOLUTIONS OF THE VIBRATING CONVEYOR

For constructing on the piece \(t \in [0, T] \) of the approximate solution of the move Eq.(3), we copy it in the following kind:

\[
R(t) \frac{d\omega_1}{dt} + Q(t) \cdot \omega^2(t) = W(t) \quad (4)
\]

where \(R(t) = I_{21} + (m_2 A(t) + m_3 H(t))\omega_1^2 + B(t) + D(t) \)

\[
A(t) = l_1^2 + 2l_1 l_2 \sin \varphi_1 \sin \varphi_2 + \cos \varphi_1 \cos \varphi_2 \cdot u_{21} + l_2^2 \cdot u_{21}.
\]

\[
H(t) = l_1^2 - l_2^2 \cdot u_{21}^2 + (a^2 \cos^2 \omega t + b^2 \sin^2 \omega t) \cdot u_{51}^2 + 2l_1 l_2 \cdot u_{21} (\sin \varphi_1 \sin \varphi_2 + + \cos \varphi_1 \cos \varphi_2) - 2l_1 \cdot u_{51} (a \cdot \sin \varphi_1 \cos \omega t + b \cdot \cos \varphi_2 \sin \omega t) - 2l_2 \cdot u_{21} (a \cdot \cos \omega t \sin \varphi_2 + + b \cdot \sin \omega t \cdot \cos \varphi_2)
\]

\[
B(t) = l_1 \sin \varphi_1 + l_2 \cos \varphi_2 \cdot u_{21} \cdot \left(-l_1 \sin \varphi_1 - l_2 \sin \varphi_2 \cdot u_{21} + l_2 \cos \varphi_2 \frac{du_{21}}{d\varphi_1} \right)
\]

\[
F(t) = (l_1 \sin \varphi_1 + l_2 \cos \varphi_2 \cdot u_{21} + a \cdot u_{51} \cos \omega t) \left(-l_1 \sin \varphi_1 - l_2 \sin \varphi_2 \cdot u_{21} - l_2 \sin \varphi_2 \frac{du_{21}}{d\varphi_1} + a \cdot \cos \omega t \frac{du_{51}}{d\varphi_1} + b \cdot \sin \omega t \frac{du_{51}}{d\varphi_1} \right)
\]

\[
N(t) = \frac{\cos(\varphi_1 + \varphi_2) - \cos(\varphi_1 - \varphi_2)) \sin(\varphi_2 - \varphi_1)}{\sin^2(\varphi_2 - \varphi_1)}
\]

\[
M(t) = (1_{4s} + 1_{3s}) \left[\frac{2}{l_1^2} \cos(\varphi_1 + \varphi_2) - \cos(\varphi_1 - \varphi_2) \sin(\varphi_2 - \varphi_1) \right] \]

\[
W(t) = (M_{\omega} - \alpha \cdot \omega_1 - 4 \cdot u_{21} (M_{K_{\omega}} + K_{\varphi_3})
\]

IV. RESULTS AND DISCUSSION

The system of differential equations modeling the movement of the material particle on the vibrating plate belonging to the conveyor was solved using Zinovyea method. Our goal was to find the optimal values of some parameters that allow the obtaining of maximum speed of a vibratory movement on the plate. The basis of the program APM structure 3D investigated the stress-strain state and determined movement of each link mechanism with results and calculations.
Study Of The Stress-Strain State Of The Shaking Conveyor Mechanism

Fig. 2. Vibrating conveyor mechanism 3D model

Fig. 3. Computed plot of the stress-strain state σ_y.

Fig. 4. Computed plot of the moving.
Study Of The Stress-Strain State Of The Shaking Conveyor Mechanism

Fig. 5. Computed plot of the F_x and T_x.

Fig. 6. Computed plot of the safety factor for yield.

Fig. 7. Computed plot of the stress-strain state τ_{yz}.

Fig. 8. Computed plot of the margin fatigue.

Fig. 9. Computed plot of the main deformation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td>0.0046</td>
<td>0.2484</td>
<td>0.6074</td>
<td>-3.6181</td>
<td>0.6038</td>
<td>-0.3482</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>0.0057</td>
<td>0.2141</td>
<td>0.7151</td>
<td>7.2149</td>
<td>0.7702</td>
<td>-0.3027</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>0.0045</td>
<td>-0.4624</td>
<td>0.3450</td>
<td>19.72251</td>
<td>0.5502</td>
<td>0.2877</td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td>0</td>
<td>0.0004</td>
<td>0.0001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Study Of The Stress-Strain State Of The Shaking Conveyor Mechanism

<table>
<thead>
<tr>
<th>Tube 45x2.5 GOST 8732-78</th>
<th>Tube 28 x 2.5 GOST 8732-78</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options section</td>
<td>Options section</td>
</tr>
<tr>
<td>The area of 333.70 square</td>
<td>The area of 200.23 square</td>
</tr>
<tr>
<td>millimeters</td>
<td>millimeters</td>
</tr>
<tr>
<td>The center of mass:</td>
<td>The center of mass:</td>
</tr>
<tr>
<td>X = 69.000, Y = -13.000mm</td>
<td>X = 75.001, Y = -8.999mm</td>
</tr>
<tr>
<td>Moment of inertia:</td>
<td>Moment of inertia:</td>
</tr>
<tr>
<td>rel. X axis 75605.68mm^4</td>
<td>rel. X axis 16434.12mm^4</td>
</tr>
<tr>
<td>rel. Y axis 75605.68mm^4</td>
<td>rel. Y axis 16434.12mm^4</td>
</tr>
<tr>
<td>polar 151211.35mm^4</td>
<td>polar 32868.25mm^4</td>
</tr>
<tr>
<td>The angle of the principal</td>
<td>The angle of the principal</td>
</tr>
<tr>
<td>central axes 0.00gradus</td>
<td>central axes 0.00gradus</td>
</tr>
</tbody>
</table>

Fig.10. Model information: List of cross section and options section.

The center of gravity model (-0.000000, 919.880834, 469.928355) [мм].
The moments of inertia model (1280707.633013, 159169646.605358, 28044219.772722) [кг*мм*мм].

V. CONCLUSIONS

1. Formulas for the position determination and velocity of conducted links depending on position and velocity of the leading link are received.
2. The differential equations of the link move of the action reduction are received.
3. On the basis of the profiles variation analysis of the angular rate of the leading link it is possible to make the following concluding:
 * with the growth of the starting driving moment middle angular rate of the action grows;
 * with reduction of the starting driving moment middle angular rate of the action is decays;
 * with coefficient increase \(\alpha_0 \cdot \alpha_{cp} \) grows;
4. The basis of the program APM structure 3D investigated the stress-strain state and determined movement of each link mechanism with results and calculations.

VI. ACKNOWLEDGMENTS

The first author likes to acknowledge JSC Center of Republic of Kazakhstan for supporting his PhD study and research at LARM in the University of Bielsko-Biala in Poland, in the academic year 2014-2015.

REFERENCES

