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Abstract: - It was purposed to understand the dynamic response of beam which are subjected to moving point 
loads. The finite element method and numerical time integration method (Newmark method) are employed in 

the vibration analysis. The effect of the speed of the moving load on the dynamic magnification factor which is 

defined as the ratio of the maximum dynamic displacement at the corresponding node in the time history to the 

static displacement when the load is at the mid – point of the structure is investigated. The effect of the spring 

stiffness attached to the frame at the conjunction points of beam and columns are also evaluated. Computer 

codes written in Matlab are developed to calculate the dynamic responses. Dynamic responses of the 

engineering structures and critical load velocities can be found with high accuracy by using the finite element 

method 
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I. INTRODUCTION 
Vibration analysis of structures has been of general interest to the scientific and engineering 

communities for many years. These structures have multitude of applications in almost every industry. The 

aircraft industry has shown much interest in this, some of the early solutions were motivated by this industry. 

This study deals with the finite element analysis of the monotonic behaviour of beams, slabs and beam-column 

joint sub assemblages. It is assumed that the behaviour of these members can be described by a plane stress 

field. Reinforced concrete has become one of the most important building materials and is widely used in many 

types of engineering structures. The economy, the efficiency, the strength and the stiffness of reinforced 

concrete make it an attractive material for a wide range of structural applications. For its use as structural 

material, concrete must satisfy the following conditions: 
(1) The structure must be strong and safe. The proper application of the fundamental principles of analysis, the 

laws of equilibrium and the consideration of the mechanical Properties of the component materials should result 

in a sufficient margin of safety against collapse under accidental overloads. 

(2) The structure must be stiff and appear unblemished. Care must be taken to control deflections under service 

loads and to limit the crack width to an acceptable level. 

(3) The structure must be economical. Materials must be used efficiently, since the difference in unit cost 

between concrete and steel is relatively large. Moving loads have considerable effects on the dynamic behaviour 

of the engineering structure. Transport engineering fr ame structures such as bridges are subjected to loads that 

vary in both time and space (moving  forces),in the form of vehicular traffic, which cause them to vibrate. A 

moving vehicle on a bridge causes deflections and stresses that are generally greater than those caused by the 

same vehicular loads applied statically..The dynamic analysis of a structure subjected to a moving load is an 

old topic of research; hence a lot of literature exists. [1] Olsson (1991) studied the dynamics of a beam 
subjected to a constant force moving at a constant speed and presented analytical and finite element 

solutions. [2] Thambiratnam & Zhuge (1996) studied the dynamics of beams on an elastic foundation and 

subjected to moving loads by using the finite element method. They investigated the effect of the foundation 

stiffness, travelling speed and the span length of the beam on the dynamic magnification factor, which is 

defined as the ratio of the maximum displacement in the time history of the mid-point to the static midpoint 

displacement. [3] Wang (1997) analyzed the multi-span Timoshenko beams subjected to a concentrated 

moving force by using the mode superposition method and made a comparison between the Euler-Bernoulli 

beam and Timoshenko beam. [4]Zheng et al. (1998) analyzed the vibration of a multi span non uniform 

beam subjected to a moving load by using modified beam vibration functions as the assumed modes based 

on Hamilton’s principle. The modified beam vibration functions satisfy the zero deflection conditions at all 

the intermediate point supports as well as the boundary conditions at the two ends of the beam. Numerical 
results are presented for both uniform and non-uniform beams under moving loads of various velocities. 
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[5]Wang & Lin (1998) studied the vibration of multi-span Timoshenko frames due to moving loads by 

using the modal analysis. [6]Kadivar & Mohebpour (1998) analyzed the dynamic responses of 

unsymmetrical composite laminated orthotropic beams under the action of moving loads. [7]Hong & Kim 

(1999)presented the modal analysis of multi span Timoshenko beams connected or supported by resilient 

joints with damping. The results are compared with FEM.[8] Ichikawa et al. (2000) investigated the 

dynamic behaviour of the multi-span Continuous beam traversed by a moving mass at a constant velocity, 

in which it is assumed that each span of the continuous beam obeys uniform Euler-Bernoulli beam Theory.  

 

II. DYNAMIC ANALYSIS BY NUMERICAL INTEGRATION 

Dynamic response of structures under moving loads is an important problem in engineering and studied by 

many researchers. The numerical solution can be calculated by various methods which are as follows 

1. Duhamel Integral 

2. Newmark Integration method 

3. Central difference Method 

4. Houbolt Method 

5. Wilson ϴ Method 

 

III. NEWMARK FAMILY OF METHODS 
 The New mark integration method is based on the assumption that the Acceleration varies linearly 

between two instants of time. In 1959 Newmark presented a family of single-step integration methods for the 

solution of structural Dynamic problems for both blast and seismic loading. During the past 45 years Newmark 

method has been applied to the dynamic analysis of many practical engineering structures. In addition, it has 

been modified and improved by many other researchers. In order to illustrate the use of this family of numerical 

integration methods, we considered the solution of the linear dynamic equilibrium equations written in the 

following form: 

[M]u t  +[C]u t+[K]ut= Ft          (1) 

Where M is the mass matrix, C is the damping matrix and K is the stiffness matrix. 

u , u , and u are the acceleration, velocity and displacement vectors, respectively.Ft is the external loading vector. 

The direct use of Taylor’s series provides a rigorous approach to obtain the following two additional equations: 

ut  = ut −∆t  + ∆tu t −∆t  + 
∆t2

2
u t −∆t+

∆t3

6
u t −∆t+………..       (2) 

u t  = u t −∆t  + ∆tu t −∆t+
∆t2

2
u t −∆t+………......                    (3) 

New mark truncated these equations and expressed them in the following form: 

ut  = ut −∆t  + ∆tu t −∆t  + 
∆t2

2
u t −∆t+ β∆t3u +……….                                                      (4) 

u t  = u t −∆t  + ∆tu t −∆t+γ∆t2u +……….                                                                         (5) 

If the acceleration is assumed to be linear within the time step, the following equation can be written as 

u  = 
u t−u t−∆t

∆t
                                                                                                                 (6) 

The substitution of equation (6) into Equations (4) and (5) produces new mark’s equations in standard form 

ut=ut −∆t+∆tu t −∆t+(
1

2
− β)∆t2u t −∆t+β∆t2u t+………..                                                  (7) 

u t=u t −∆t  + (1-γ)∆tu t −∆t+ γ∆tu t+………..                                                                      (8) 

 

Stability of Newmark Method 

For zero damping Newmark method is conditionally stable if 

γ ≥
1

 2
 , β≤

1

 2
 and ∆t ≤

1

ωmax  (
γ

2
−β)

                                                                                        (9) 

Whereωmax is the maximum frequency in the structural systemNew mark’s method is unconditionally stable if

  

  2≥ 
1

2
                                                                                                                                       (10) 

However, if  is greater than 1/2, errors are introduced. These errors are associated with “numerical damping” 

and “period elongation”. For large multi degree of freedom structural systems the time step limit, given by 

equation (9), can be written in a more usable form as 
∆t

Tmin
≤ 

1

2π (
γ

2
−β)

                                                                                                              (11) 

Where  Tmin is the minimum time period of the structure. Computer model of larger structures normally contain 

a large number of periods which are smaller than the integration time step; therefore, it is essential that one 
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select a numerical integration method that is unconditionally stable for all time steps. Table 3.1 shows the 

summary of the Newmark method for direct integration. 

 

IV. SOLUTION USING FINITE ELEMENT METHOD 
Finite element method (FEM) is a numerical method for solving a differential or integral equation. It 

has been applied to a number of physical problems, where the governing differential equations are available. 

The method essentially consists of assuming the piecewise continuous function for the solution and obtaining 

the parameters of the functions in a manner that reduces the error in the solution. 

A promising approach for developing a solution for structural vibration problems is provided by an advanced 

numerical discretisation scheme, such as, finite element method (FEM).The finite element method (FEM) is the 

dominant discretisation technique in structural mechanics. 

The basic concept in the physical FEM is the subdivision of the mathematical model into disjoint (non-

overlapping) components of simple geometry called finite elements or elements for short. The response of each 

element is expressed in terms of a finite number of degrees of freedom characterized as the value of an unknown 

function, or functions, at a set of nodal points. The response of the mathematical model is then considered to be 

approximated by that of the discrete model obtained by connecting or assembling the collection of all elements. 
The finite element method (FEM) is the dominant discretisation technique in structural mechanics. The basic 

concept in the physical interpretation of the FEM is the subdivision of the mathematical model into disjoint 

(non-overlapping) components of simple geometry called finite elements or elements for short. The response of 

each element is expressed in terms of a finite number of degrees of freedom characterized as the value of an 

unknown function, or functions, at a set of nodal points. 

The response of the mathematical model is then considered to be approximated by that of the discrete model 

obtained by connecting or assembling the collection of all elements. The disconnection-assembly concept occurs 

naturally when examining many artificial and natural systems. For example, it is easy to visualize an engine, 

bridge, building, airplane, or skeleton as fabricated from simpler components. Unlike finite difference models, 

finite elements do not overlap in space. 

 

V. BEAM ELEMENT 
 Beams are the most common type of structural component, particularly in Civil and Mechanical 

Engineering. A beam is a bar-like structural member whose primary function is to support transverse loading 

and carry it to the supports. The main difference of beams with respect to bars is the increased order of 

continuity required for the assumed transverse-displacement functions to be admissible. Not only must these 

functions be continuous but they must possess continuous x first derivatives. To meet this requirement both 

deflections and slopes are matched at nodal points. Slopes may be viewed as rotational degrees of freedom in 

the small-displacement assumptions used here. 

A beam is another simple but commonly used structural component. It is also geometrically a straight 
bar of an arbitrary cross-section, but it deforms only in directions perpendicular to its axis. A straight beam 

element with uniform cross section is shown in Figure1.The main difference between the beam and the truss is 

the type of load they carry. Beams are subjected to transverse loading, including transverse forces and moments 

that result in transverse deformation. Finite element equations for beams will be developed for the analysis, and 

the element developed is known as the beam element. 

 
Figure 1 moving load on a straight single beam element 

 

In beam structures, the beams are joined together by welding (not by pins or hinges, as in the case of 

truss elements), so that both forces and moments can be transmitted between the beams. The cross-section of the 

beam structure is assumed uniform. If a beam has a varying cross-section, it is advised that the beam should be 
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divided into shorter beams, where each can be treated as beam(s) with a uniform cross-section. Nevertheless, the 

Finite element matrices for varying cross-sectional area can also be developed with ease using the same 

concepts that are introduced. The beam element developed is based on the Euler–Bernoulli beam theory that is 

applicable for thin beams.     

The Euler-Bernoulli beam theory is used for constituting the finite element matrices. The longitudinal axis of the 

element lies along the x axis. The element has a constant moment of inertia I, modulus of elasticity E, density ρ 

and length l. Two degrees of freedom per node, translation along y-axis (y1, y2) and rotation about z-axis (  y1
’, 

y2
’) are considered. The beam is modeled with 20 equally sized elements. 

 

VI. ANALYSIS OF BEAM ELEMENT 
 Consider a beam element of length l= 2a with nodes 1 and 2 at each end of the element, the local x-axis 

is taken in the axial direction of the element with its origin at the middle section of the beam. Similar to all other 

structures, to develop the FEM equations, shape functions for the interpolation of the variables from the nodal 

variables would first have to be developed. As there are four DOFs for a beam element, there should be four 

shape functions. It is often more convenient if the shape functions are derived from a special set of local 

coordinates, which is commonly known as the natural coordinate system. This natural coordinate system has its 
origin at the centre of the element, and the element is defined from −1 to +1, as shown in Figure2. 

 
Figure2 beam element having 2 nodes with 4 dofs 

 

 Finite Element Method Equation 

 In planar beam elements there are two degrees of freedom (DOFs) at a node in its local coordinate 

system. They are deflection in the y direction, and rotation in the x–y plane, with respect to the z-axis. 

Therefore, each beam element has a total of four DOFs. 

The beam is divided into elements having each nodes has two degree of freedom. Typically the degree of 

freedom of node1 are q1 and q2 , and for node2 are q3 and q4.the vector represents the global displacement vector 
for a single element the local degree of freedom are represented by: 

q =  q1,q2,q3,q4 
T
           (11) 

since q is same as  y1,y 1,y 2,y2 
T
.The shape function for interpolating y on an element are defined in terms of  

on -1 to +1 since nodal values and nodal shapes are involved .we define hermit shape functions which satisfy 

nodal value and slope continuity requirement’s  each of the shape functions is of cubic order represented by 

H = a + b + c2 + d3                       (12) 
Where a, b, c and d are four unknown constants which are determined by imposing the boundary conditions at 

the corresponding nodes. 

The following conditions must be satisfied as: 

 

values H1 H1
  H2 H2

  H3 H3
  H4 H4

  

 = -1 1 0 0 1 0 0 0 0 

 = 1 0 0 0 0 1 0 0 1 

 

The coefficients a, b, c and d are easily obtained by imposing these conditions in equation (12) obtained as: 

H1 = 
1

4
 2 − 3 +  3             (13) 

H2 = 
1

4
 1 −  − 

2 +  3                                                                                                            (14) 

H3 = 
1

4
 2 + 3 −  3                                                                                                                   (15) 

H4 =  
1

4
 −1 −  + 

2 +  3                                                                                                        (16) 
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The hermits shape function can be used to write function y () in the form 

y() = H1y1 + H2 
dy

d
 1 + H3y2 +H4 

dy

d
                                                                                     (17) 

x= 
1− 

2
x1 +

1+ 

2
x2                                                                                                                                                                   (18) 

=
x1+x2

2
+

x2−x1

2
                                                                                                                (19) 

Since the length of the element l= x2-x1 

We have dx =
l

2
d                                                                                                                                 

(20) 

y0 = H1q1 + 
l

2
H2q2 + H3q2 +

l

2
H4q4                                                                                                                                  

(21) 

y=Hq                                                                                                                                       (22) 

Where H= H1,
l

2
H2,H3,

l

2
H4                                                                                                      (23) 

We consider the integral as summations over the integrals over the elements. The element strain energy of a 

single element is given by 

S.E=  
EI

2

l

0
(
∂2y

∂x2)2dx                                                                                                         (24) 

 
dy

dx
=

2

l

dy

d
 and 

d2 y

dx2 =
4

l2

d2y

d2x
                                                                                                     (25) 

Then substituting y=H q we obtain 

 
d2y

dx2
 

2

= qT16

l4
 

d2H

d2  
T

 
d2H

d2  q                                                                                           (26) 

 
d2H

d2   =   
3

2
,

−1+3

2

l

2
, −

3

2
,

1+3

2

l

2
                                                                                            (27) 

 

S.E = 
1

2
qT 8EI

l3  

 
 
 
 
 
 
 

9

4


2 3

8
(−1 + 3)l −

9

4


2 3

8
(1 + 3)l

 
−1+3

4
 

2

l2 −3

8
(−1 + 3)l

−1+92

16
l2

symmetric
9

4


2               −
3

8
(1 + 3)l

 
1+3

4
 

2

l2
 
 
 
 
 
 
 

+1

−1
 dξq          (28) 

This result the elemental strain energy is given by 

S.E=1/2 qTK q                                                                                                                   

(29) 

the symmetric elemental stiffness matrix becomes as 

K=
 EI

l3
 

12 6l −12 6l
6l 4l2 −6l 2l2

−12
6l

−6l
2l2

12
−6l

−6l
4l2

                                                                                                   (30) 

Similarly Using M= HT+1

−1
HρA

l

2
d                                                                      (31) 

On integration we get 

M = 
ρAl

420
 

156 22l 54 −13l
22l 4l2 13l −3l2

54
−13l

13l
−3l2

156
−22l

−22l
4l2

                                                                                      (32) 

The overall mass and stiffness matrices of the structure  M and  K are constituted by joining 20 element 
matrices using Mat lab codes, 

 

Equations of Motion of the Beam Structure 

The equation of motion for a multiple degree of freedom undamped structural system is represented as follows 

 

[M]{y } + [K] {y} = {F (t)}                                                                                               (33) 

 

Where y  and y are the respective acceleration and displacement vectors for the whole structure and F (t) is the 

external force vector. 
Under free vibration, the natural frequencies and the mode shapes of a multiple degree of freedom system are 

the solutions of the Eigen values problem. 
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[[K] − ω2 [M]] {Φ} =0                                                                                                      (34) 

 

Where ω is the angular natural frequency and Φ is the mode shape of the structure for the corresponding natural 

frequency. 

 

Beam specification: 

Software used Mat lab codes 

Parameter Frequency 

Length of beam 1m 

Section dimensions 0.01×0.01m2 

Boundary conditions a) Clamped –clamped 

b) Clamped-pinned 

c) Pinned-pinned 

Material Steel 

Mass density 7860 kgm‐3 

Elastic modulus 206.0E09Nm‐2 

Two different spring stiffness K1=50000N/m 

K2=200000N/m 

 

The dynamic analysis is performed for beam and frame geometry and obtained the natural frequencies of the 

structure. Beams which are under considerations are subjected to constant point force F = -100 N is used. The 

moving point load on a beam having three different boundary conditions gives us different frequencies. The first 

three natural frequencies of the beam element are obtained for Using Mat lab given in table1 

 

Table1 the first three natural frequency of the beam 

Natural   frequency(HZ) 

Modes            1            2           3 

BEAM 

Clamped-clamped 52.62 145.06 284.39 

Clamped-pinned 36.26 117.52 245.21 

Pinned-pinned 23.21 92.86 208.93 

 

VII. CONCLUSION 
Analytical Solution of Beam under Moving Load with different boundary condition using Dynamic Green 

Function 
 

The governing equation of a flexible beam subject to a concentrated moving force, shown in Fig. 5.1, can be 

given by 
4 2

4 2

( , ) ( , )
( , )

y x t y x t
EI F x t

x t


 
 

                                                                                   

(38) 

Where ( , )y x t  represents the deflection of the beam, x  represents the travelling direction of the moving load, 

and t  represents time. Also, EI is the rigidity of the beam, E  is Young’s modulus of elasticity, I  is the cross 

sectional moment of inertia of the beam, and   is the mass per unit length of the beam. The beam length is l , 

travelling load velocity is v . The boundary conditions and the initial conditions for the general beam are as 

shown in (Fig.3) 
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Fig. 3, Moving mass on a beam with general boundary condition 

3 2

3 2

( , ) ( , ) ( , )
( , )l t

y x t y x t y x t
k y x t k

xx x

  
 

 
for x=0 and x=l                                (39) 

( ,0)
( ,0) 0

y x
y x

t


 

                                                                                         

(40) 

where lk  and tk  are linear and twisting spring constants, that prevent vertical motion and in x-y plane rotation 

of the beam ends, respectively. ( , )F x t is external load and for a moving concentrated load case, can be given by 

  
( , ) ( )F x t P x u 

                                                                                                              
(41) 

Where P  is the amplitude of the applied load, and   is the Dirac-delta function, which is defined by 

0 0( ) ( ) ( )x x f x dx f x



 

                                                                                          
(42)

  

Results of the Dynamic Analysis of Beam 

 
Fig4 Matlab results for clamped – clamped boundary conditions of a beam with values 

 

 
Fig5  Dynamic displacements of the mid – point of the clamped – clamped beam versus the position of the 

moving load on the beam for various α values 

 
Fig 6 Matlab results for clamped –pinned boundary conditions of a beam with value 
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Fig 7 Dynamic displacements of the mid – point of the clamped – pinned beam versus the position of the 

Moving load on the beam for various α values 

 
Fig8  Matlab results for pinned – pinned boundary conditions of a beam witvalues 

 

 
Fig 9 Dynamic displacements of the mid – point of the pinned – pinned beam versus the position of the moving 

load on the beam for various α values 
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Figu10  dynamic magnification factor of the mid - point of the beam versus α for three different boundary 

conditions. 
 

Figure 4 shows the dynamic responses of the mid-points of the clamped – clamped beam for 

value before discussing about the numerical results the formulation developed herein is validated 

against available analytical solutions for a beam with different boundary conditions and acted upon by a moving 

load. First, comparison of the analytical results with the matlab results of a clamped-clamped beam as given in 

table 5.1 

The vertical axis in Fig. 5, shows the dimensionless deflections ( / sty y y ) of the point under the 

moving load, and the horizontal axis depicts the position of the load along the beam. Results reported by are 

computed by assumed mode method and are compared with the present result of green function approach. As it 

can be observed in Fig. 6, there is an excellent agreement between the two results. Where sty  is the static 

transverse deflection at the beam mid span when a concentrated load with amplitude F is applied statically at the 

beam's mid span. For example for the clamped – clamped B.C. we have: 

yst= 
Fl3

192EI
                                                                     

(43) 

In Fig. 7, deflection of a beam with simply supported boundary conditions for the speed parameter α=2 

dimensionless speed parameter defined as: 

crvv                                                                                                     

(44) 

Where the critical speed is:  

m

EI

lT

l
vcr




2
                                                                          

(45) 

Where EI  is the bending rigidity, m is the mass per unit length of the beam and T is the period that is 

related to lowest mode of beam vibrations. In Fig. 8, there is a close agreement between the analytical result and 
that obtained by matlab codes 

The speed parameter as mentioned is ratio of speed of the load to critical speed. In this article, the speed 

parameter is introduced in the following form 

αi=
v

ωi l
 ; i=1,2,3….                                                                    

(46) 

Where v  is the speed of load in sm  and i  is the 
thi natural frequency of beam in srad . Fig 4, 5, 6 show 

the mid – point displacements versus the position of the moving load on the beam for different boundary 
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conditions and various values for the beam structure. With small values (=0.01) displacement curve 

is close to the static displacement curve for all boundary conditions(clamped-clamped, clamped-pinned, pinned-

pinned). The moving load and the maximum dynamic displacements of the mid-point of the beam are not in the 

same phase at overcritical part. The time at which the maximum mid – point displacement is observed shifts 

right with increasing values regardless of the boundary condition of the beam. The highest dynamic 

deflections occur for the pinned – pinned beam as expected. 

Fig 10 shows the dynamic magnification factor (Dd) of the mid - point of the beam versus for three 
different boundary conditions. The maximum dynamic magnification occurs for = 1.02 and Dd = 1.632 for 

clamped – clamped beam. For the clamped – pinned beam the maximum value of the dynamic magnification is 

1.662 and observed at = 1.31. For pinned – pinned beam, the maximum Dd= 1.728 and recorded at = 

1.22. For pinned – pinned boundary conditions the dynamic magnification values are greater than those obtained 

for clamped –clamped and clamped – pinned beams for low and high moving load speeds. The clamped – 

clamped boundary conditions generally gives the lower dynamic magnification values except in the middle 

speed region. 

Dynamic magnification factors for the mid – point of the beams are given for various values and different 

boundary conditions in Table 2. These values are only valid in the time interval that the moving load is on the 

beam. 

Table2 Dynamic magnification factors for the mid – point of the beams for various a values (*α  values which 
makes Dd maximum) 

 

 

 
 

VIII. CONCLUSION 
 Moving load problem is generally studied for beam structures. In addition to the beam structures, 

dynamic responses of frames and spring attached frames subjected to the moving point load are also analyzed in 

this study. Euler-Bernoulli beam theory is used in the finite element method for constituting the element 

matrices. The Newmark integration method is employed for forced vibration analysis. The conclusions drawn 
can be summarized as follows: 

1. The moving load and the maximum dynamic displacements for the mid-point of the beam     are not in the 

same phase at overcritical part. The time at which the maximum mid – point displacement is observed shifts 

right with increasing α values regardless of the boundary condition of the beam. 

2. The highest dynamic displacements occur for a pinned – pinned beam. For pinned – pinned boundary 

conditions the dynamic magnification values are greater than those obtained for clamped – clamped and 

clamped – pinned beams for low and high moving load speeds. The clamped – clamped boundary conditions 

generally gives the lower dynamic magnification values except the middle speed region. 

3. Attaching a spring to the frame at the conjunction points of beam and columns makes the frame more rigid 

and shifts the mode shapes of the frame structure up. 

4. A longer beam implies a smaller first natural frequency for frame structure ;similarly longer columns imply 
smaller natural frequencies. 

5. With lower α values (α <1 ) springs are very effective for all nodes. In this interval, higher Dd values are 

obtained with increasing spring stiffness. In the middle and high speed region, attaching a spring to the frame is 

not an advisable solution due to the increasing Dd values. 

6. Maximum Dd occurs after the moving load left the beam for both columns and beam of the frame structure 

when the α value is greater than some critical values. 

7. Lower Dd values are observed with increasing damping ratio for a clamped –clamped beam. The occurring 

time of maximum dynamic displacement shifts left with increasing damping ratio. 

8. Maximum Dd values are observed at smaller α values both for the beam of the frame and spring attached 

frame with increasing damping ratio. 



Vibration Analysis Of Beam Subjected To Moving Loads Using  Finite Element Method  

International organization of Scientific Research                                                           17 | P a g e  

REFERENCES 
[1] Bilello, C. & Bergman, L.A. (2004) Vibration of damaged beams under a moving mass: theory and 

experimental validation. Journal of Sound and Vibration, 274, 567-582. 

[2] Biggs J. M. (1982) Introduction to Structural Dynamics McGraw-Hill, New York Chen, Y.H., Huang, 
Y.H. & Shih, C.T. (2001) Response of an infinite Timoshenko beam on a viscoelastic foundation to a 

harmonic moving load. Journal of Sound and Vibration 241(5) 809-824. 

[3] Chopra, Anil K. (1995) Dynamics of Structures, Prentice Hall, New Jersey. Clough R.W., Penzien, J. 

(1993) Dynamics of Structures. New York: McGraw-Hill. 

[4] Hanselman, Duane C. (2001) Mastering Matlab 6. Prentice Hall, Upper Saddle River, N.J. 

[5] Hong, S.W. & Kim, J.W. (1999) Modal analyses of multi span Timoshenko beams connected or 

supported by resilient joints with damping. Journal of Sound and Vibration, 227(4), 787-806. 

[6] Ichikawa, M., Miyakawa, Y. & Matsuda, A. (2000) Vibration analysis of the continuous beam subjected 

to a moving mass. Journal of Sound and Vibration, 230(3), 493-506. 

[7] Kadivar, M.H. & Mohebpour, S.R. (1998) Finite element dynamic analysis of unsymmetric composite 

laminated beams with shear effect and rotary inertia under the action of moving loads. Finite Elements in 

Analysis and Design (29) 259-273 
[8] Wu, J.J., Whittaker, A.R. & Cartmell, M.P. (2001) Dynamic responses of structures to moving bodies 

using combined finite element and analytical methods. International Journal of Mechanical Sciences (43) 

2555-2579 

[9] Zibdeh, H.S. & Hilal, M.A. (2003) Stochastic vibration of laminated composite coated beam traversed by 

a random moving load. Engineering Structures (25) 397-404 

[10] Wu, J.J., Whittaker, A.R. & Cartmell, M.P. (2001) Dynamic responses of structures to moving bodies 

using combined finite element and analytical methods. International Journal of Mechanical Sciences (43) 

2555-2579 

[11] Rao, Singiresu S. (1995) Mechanical Vibrations. Addison - Wesley Publishing Company. 

[12] Chandrupatla.R.Tirupathi and Belegundu.D Ashok Introduction to finite elements in Engineering, third 

edition 
[13] Oniszczuk, Z. (2003) Forced transverse vibrations of an elastically connected complex simply supported 

double-beam system. Journal of Sound and Vibration, 264, 273-286 

[14] Newmark, N. (1959) A method of computation for structural dynamics. J. Eng. Mech. Div. ASCE: 67-94 

 

 

 

 

 

 

 


