
IOSR Journal of Engineering (IOSRJEN)

ISSN: 2250-3021 Volume 2, Issue 7(July 2012), PP 21-24

www.iosrjen.org

www.iosrjen.org 21 | P a g e

Comparative Study of Prototype Model For Software

Engineering With System Development Life Cycle

Rajendra Ganpatrao Sabale, Dr. A.R. Dani
Student of Ph.D., Singhania University, Pacheri Bari, Dist. Jhunjhunu (Rajasthan), India

International Institute of Information Technology, Pune (Maharashtra), India

Abstract: - The concept of system lifecycle models came into existence that emphasized on the need to follow

some structured approach towards building new or improved system. Many models were suggested like

waterfall, prototype, rapid application development, V-shaped etc. In this paper, we focus on the comparative

analysis of these Software Development Life Cycle Models. With the growing operations of organizations, the

need to automate the various activities increased. So, it was felt that some standard and structural procedure or

methodology be introduced in the industry so that the transition from manual to automated system became easy.

I. Introduction
There are several models for such processes, each describing approaches to a variety of activities that

take place during the process. ISO 12207 is an ISO standard for describing the method of selecting,

implementing and monitoring the life cycle for software. Any software development process is divided into

several logical stages that allow a software development company to organize its work efficiently in order to

build a software product of the required functionality within a specific time frame and budget. Rodriguez-

Martinez et al. focused on lifecycles frameworks models and detailed software development life cycles process

and reports the results of a comparative study of Software development life cycles that permits a plausible

explanation of their evolution in terms of common, distinctive, and unique elements as well as of the

specification rigor and agility attributes. For it, a conceptual research approach and a software process lifecycle
meta-model are used. Jovanovich D. et al. presented basic principles and comparison of software development

models. First part is the presentation of development models and second part introduces a practical approach to

implement one of the Software development models. Finally, the problem of determining the most suitable

Software development model in the case of developing PC applications. Davis A.M. et al. provided a framework

that can serve as a basis for analyzing the similarities and differences among alternate life-cycle models as a tool

for software engineering researchers to help describe the probable impacts of a life-cycle model and as a means

to help software practitioners decide on an appropriate life-cycle model to utilize on a particular project or in a

particular application area. Sharma B. et al. presented the Comparative Analysis of Software Process

Improvement models. Software process improvement is recognized as an important part of the software

development life cycle. This study also provided simulation of the existing models like Capability Maturity

Model, ISO etc. and analyzes each model along with their importance and drawbacks. Maglyas A. et al.

described that the size and complexity of software development projects are growing, at the same time
proportion of successful projects is still quite low. The objective of study is to compare two existing models of

success prediction i.e. The Standish Group and McConnell models and to determine their strengths and

weaknesses and the results show that The Standish Group has a tendency to overestimate the problems in a

project. McConnell predicts successful projects pretty well but underestimates the percentage e of unsuccessful

projects. Rothay et al. provided a brief review of traditional SDLCs, they related how the use of traditional

software development models is numerous and often regarded as the proper and disciplined approach to the

analysis and design of software applications. Osborn et al. discussed traditional SDLC techniques and how over

time the phases of these approaches have become enshrined in a development cycle that includes defining

requirements, designing a system to meet those requirements, coding and testing. A Software Development Life

Cycle Model is a set of activities together with an ordering relationship between activities performed in a

manner that satisfies the ordering relationship that will produce desired product. SDLC Model is an abstract
representation of a envelopment process. In a software development effort the goal is to produce high quality

software. The development process is, therefore, the sequence of activities that will produce such software. A

software development life cycle model is broken down into distinct activities and specifies how these activities

are organized in the entire software development effort. In response to traditional approaches to software

development, new lightweight methodologies have appeared. A high percentage of software development

efforts have no process and might best be described as a chaotic “code and fix” activity. Light SDLC techniques

are compromise between no process and too much process. The nine types of lightweight SDLC methodologies

Comparative Study of Prototype Model For Software Engineering With Development Life Cycle

www.iosrjen.org 22 | P a g e

are Adaptive Software Development (ASD), Agile Software Process (ASP), Dynamic System Development

Method (DSDM), Extreme Programming (XP), Feature Driven Development (FDD), Rational Unified Process
(RUP) etc.

Activities involved Software Development life cycle model:

Problem solving in software consists of these activities:

1. Understanding the problem

2. Deciding a plan for a solution

3. Coding the planned solution

4. Testing the actual program

For large systems, each activity can be extremely complex and methodologies and procedures are

needed to perform it efficiently and correctly. Furthermore, each of the basic activities itself may be so large that

it cannot be handled in single step and must be broken into smaller steps. For example, design of a large
software system is always broken into multiple, distinct design phases, starting from a very high level design

specifying only the components in the system to a detailed design where the logic of the components is

specified. The basic activities or phases to be performed for developing a software system are

1. Determination of System‟s Requirements

2. Design of system

3. Development (coding) of software

4. System Testing

In this feasibility analysis phase, the feasibility of the project is analyzed, and a business proposal is put

forth with a very general plan for the project and some cost estimates. Once the business proposal is accepted or

the contract is awarded, the development activities begin starting with the requirement analysis.

II. Comparative Analysis:

Waterfall Model is easy to manage due to the rigidity of the model as each phase has specific

deliverables and a review process. It works well for smaller projects where requirements are very well
understood. V-shaped Model has higher chance of success over the waterfall model due to the development of

test lans during the life cycle. It works well for small projects where requirements are easily understood. CMM

Model provides more detailed coverage of the product life cycle than other process-improvement products used

alone. CMM provides an opportunity to eliminate the stovepipes and barriers that typically exist in different

parts of an organization and that typically are not addressed by other process-improvement models. CMM,

which integrates software engineering and systems engineering into product engineering, is a valuable tool for

many organizations that produce software only solutions RUP Model is a complete methodology in itself with

an emphasis on accurate documentation. It is proactively able to resolve the project risks associated with the

client‟s evolving requirements. Less time is required for integration as the process of integration goes on

throughout the software development life cycle. The development time required is less due to reuse of

components.

Prototype Model places more effort in creating the actual software instead of concentrating on

documentation. This way, the actual software could be released in advance. Prototyping requires more user

involvement and allows them to see and interact with a prototype allowing them to provide better and more

complete feedback and specifications. The presence of the prototype being examined by the user prevents many

misunderstandings that occur when each side believe the other understands what they said. The final product is

more likely to satisfy the user‟s desire for look, feel and performance. Incremental model is at the heart of a

cyclic software development process . It starts with an initial planning and ends with deployment with the cyclic

interactions in between. Easier to test and debug during a smaller iteration. Easier to manage risk because risky

Comparative Study of Prototype Model For Software Engineering With Development Life Cycle

www.iosrjen.org 23 | P a g e

pieces are identified and handled during its iteration. Spiral model is good for large and mission critical projects

where high amount of risk analysis is required like launching of satellite.

RAD Model is flexible and adaptable to changes as it incorporates short development cycles i.e. users

see the RAD product quickly. It also involves user participation thereby increasing chances of early user

community acceptance and realizes an overall reduction in project risk.JAD Model can be successfully applied

to a wide range of projects like new systems, enhancements to existing systems, System conversions, Purchase

of a system etc. In Agile Model face to face communication and continuous inputs from customer representative

leaves no space for guesswork. The end result is the high quality software in least possible time duration and

satisfied customer. Comparison between different SDLC models in relation to their features like requirements,

cost, resource control, risk involvement, changes incorporated, time frame, interface, reusability etc.

Comparative Study of Prototype Model For Software Engineering With Development Life Cycle

www.iosrjen.org 24 | P a g e

III. Conclusion
There are many SDLC models such as Agile, RAD and Waterfall etc. used in various organizations

depending upon the conditions prevailing in it like v-model gives the verification and validation for organization

and it is very useful for organization. All these different software development models have their own

advantages and disadvantages. Nevertheless, in the contemporary commercial software development world, the

fusion of all these methodologies is incorporated. Timing is very crucial in software development. If a delay

happens in the development phase, the market could be taken over by the competitor. Also if a „bug‟ filled

product is launched in a short period of time (quicker than the competitors), it may affect the reputation of the

company.

There should be a tradeoff between the development time and the quality of the product. Customers

don‟t expect a bug free product but they expect a user-friendly product that results in Customer Ecstasy!

Reference
[1] Laura C. Rodriguez Martinez, Manuel Mora ,Francisco,J. Alvarez, “A Descriptive/Comparative Study of the Evolution of Process

Models of Software Development Life Cycles”, Proceedings of the 2009 Mexican International Conference on Computer Science

IEEE Computer Society Washington, DC, USA, 2009.

[2] Jovanovich, D., Dogsa, T.,“Comparison of software development models,” Proceedings of the 7th international Conference on, 11-

13 June 2003, ConTEL 2003, pp. 587-592.

[3] A. M. Davis, H. Bersoff, E. R. Comer, “A Strategy for Comparing Alternative Software Development Life Cycle Models”, Journal

IEEE Transactions on Software Engineering ,Vol. 14, Issue 10, 1988

[4] Sharma, B.; Sharma. N, “Software Process Improvement: A Comparative Analysis of SPI models”, Emerging Trends in

Engineering and Technology (ICETET), 2009 2
nd

 International Conference on,16-18, 2009, pp. 1019- 1024

[5] Maglyas, A.; Nikula, U.; Smolander, K.,“Comparison of two models of success prediction in software development projects”,

Software Engineering Conference (CEE-SECR), 2010 6th Central and Eastern European on 13-15 Oct. 2010, pp. 43-49.

[6] Osborn, C. SDLC, JAD, RAD,"Center for Information Management Studies", 2001.

[7] Rothi, J.,Yen, D, "System Analysis and Design in End User Developed Applications", Journal of information Systems Education,

1989.

