A STUDY ON ANTI L-FUZZY SUBHEMIRINGS OF A HEMIRING

N. SELVAK KUMARAEN & K. ARJUNAN

1Professor & Head Department of Mathematics, Latha Mathavan Engineering College, Kidaripatti-625301, Madurai, Tamilnadu, India
2Department of Mathematics, H.H.The Rajahs College, Pudukkottai – 622001, Tamilnadu, India.

ABSTRACT: In this paper, we made an attempt to study the algebraic nature of an anti L-fuzzy subhemiring of a hemiring. 2000 AMS Subject classification: 03F55, 06D72, 08A72.

KEY WORDS: L-fuzzy set, anti L-fuzzy subhemiring, pseudo anti L-fuzzy coset.

INTRODUCTION

There are many concepts of universal algebras generalizing an associative ring (R; +, .). Some of them in particular, nearrings and several kinds of semirings have been proven very useful. Semirings (called also halfrings) are algebras (R; +, .) share the same properties as a ring except that (R; +) is assumed to be a semigroup rather than a commutative group. Semirings appear in a natural manner in some applications to the theory of automata and formal languages. An algebra (R; +, .) is said to be a semiring if (R; +) and (R; .) are semigroups satisfying a. (b+c) = a. b+a. c and (b+c) .a = b. a+c. a for all a, b and c in R. A semiring R is said to be additively commutative if a+b = b+a for all a, b and c in R. A semiring may have an identity 1, defined by 1.a = a. 1 and a zero 0, defined by 0+a = a = a+0 and a.0 = 0 = 0.a for all a in R. A semiring R is said to be a hemiring if it is an additively commutative with zero. After the introduction of fuzzy sets by L.A.Zadeh[12], several researchers explored on the generalization of the concept of fuzzy sets. The notion of anti fuzzy Left h- ideals in Hemirings was introduced by Akram.M and K.H.Dar[1]. The notion of homomorphism and anti-homomorphism of fuzzy and anti-fuzzy ideal of a ring was introduced by N.Palaniappan & K.Arjunan[6]. In this paper, we introduce the some Theorems in anti L-fuzzy subhemiring of a hemiring.

1. PRELIMINARIES:

1.1 Definition: Let X be a non-empty set and L = (L, ≤) be a lattice with least element 0 and greatest element 1. A L-fuzzy subset A of X is a function A : X → L.

1.2 Definition: Let (R, +, .) be a hemiring. A L-fuzzy subset A of R is said to be an anti L-fuzzy subhemiring (ALFSHR) of R if it satisfies the following conditions:

(i) μA(x+y) ≤ μA(x) ∨ μA(y),
(ii) μA(x+y) ≤ μA(x) ∨ μA(y), for all x and y in R.

1.3 Definition: Let A and B be L-fuzzy subsets of sets G and H, respectively. The anti-product of A and B, denoted by AxB, is defined as AxB = {(x, y), μA(x,y) / for all x in G and y in H }, where μAxB(x, y) = μA(x) ∨ μB(y).

1.4 Definition: Let A be a L-fuzzy subset in a set S, the anti-strongest L-fuzzy relation on S, that is a L-fuzzy relation on A is V given by μA(x, y) = μA(x) ∨ μA(y), for all x and y in S.

1.5 Definition: Let (R, +, .) and (R', +, .) be any two hemirings. Let f : R → R' be any function and A be an anti L-fuzzy subhemiring in R, V be an anti L-fuzzy subhemiring in f(R) = R', defined by μV(y) = inf x ∈ f⁻¹(y) μA(x), for all x in R and y in R'. Then A is called a preimage of V under f and is denoted by f⁻¹(V).

1.6 Definition: Let A be an anti L-fuzzy subhemiring of a hemiring (R, +, .) and a in R. Then the pseudo anti L-fuzzy coset (aA)p is defined by (aA)p(x) = p(a)μA(x), for every x in R and for some p in P.

2. PROPERTIES OF ANTI L-FUZZY SUBHEMIRING OF A HEMIRING

2.1 Theorem: Union of any two anti L-fuzzy subhemirings of a hemiring R is an anti L-fuzzy subhemiring of R.

Proof: Let A and B be any two anti L-fuzzy subhemirings of a hemiring R and x and y in R. Let A = {(x, μA(x)) / x ∈ R} and B = {(x, μB(x)) / x ∈ R} and also let C = A ∪ B = {(x, μC(x)) / x ∈ R}, where μC(x) = μA(x) ∨ μB(x). Now, μC(x+y) ≤ [μA(x)∨μB(y)]∨ μC(x)∨μC(y). Therefore, μC(x+y) ≤
A STUDY ON ANTI L-FUZZY SUBHEMIRINGS OF A HEMIRING

\(\mu_c(x) \lor \mu_c(y) \), for all \(x \) and \(y \) in \(R \). And, \(\mu_c(xy) \leq \{ \mu_a(x) \lor \mu_a(y) \} \lor \{ \mu_b(x) \lor \mu_b(y) \} = \mu_c(x) \lor \mu_c(y) \).

Therefore, \(\mu_c(xy) \leq \mu_c(x) \lor \mu_c(y) \), for all \(x \) and \(y \) in \(R \). Therefore \(C \) is an anti L-fuzzy subhemiring of a hemiring \(R \).

2.2 Theorem: The union of a family of anti L-fuzzy subhemirings of hemiring \(R \) is an anti L-fuzzy subhemiring of \(R \).

Proof: It is trivial.

2.3 Theorem: If \(A \) and \(B \) are any two anti L-fuzzy subhemirings of the hemirings \(R_1 \) and \(R_2 \) respectively, then anti-product \(AB \) is an anti L-fuzzy subhemiring of \(R_1 \times R_2 \).

Proof: Let \(A \) and \(B \) be two anti L-fuzzy subhemirings of the hemirings \(R_1 \) and \(R_2 \) respectively. Let \(x_1 \) and \(x_2 \) be in \(R_1 \), \(y_1 \) and \(y_2 \) be in \(R_2 \). Then \((x_1, y_1) \) and \((x_2, y_2) \) are in \(R_1 \times R_2 \). Now, \(\mu_{AB}[(x_1, y_1) + (x_2, y_2)] \leq \{ \mu_A(x_1) \lor \mu_A(x_2) \} \lor \{ \mu_B(y_1) \lor \mu_B(y_2) \} = \mu_{AB}(x_1, y_1) \lor \mu_{AB}(x_2, y_2) \). Therefore, \(\mu_{AB}[(x_1, y_1) + (x_2, y_2)] \leq \mu_{AB}(x_1, y_1) \lor \mu_{AB}(x_2, y_2) \).

Therefore, \(\mu_{AB}[(x_1, y_1)(x_2, y_2)] \leq \mu_{AB}(x_1, y_1) \lor \mu_{AB}(x_2, y_2) \). Hence \(AB \) is an anti L-fuzzy subhemiring of hemiring of \(R_1 \times R_2 \).

2.4 Theorem: Let \(A \) be a L-fuzzy subset of a hemiring \(R \) and \(V \) be the anti-strongest L-fuzzy relation of \(R \). Then \(A \) is an anti L-fuzzy subhemiring of \(R \) if and only if \(V \) is an anti L-fuzzy subhemiring of \(R \times R \).

Proof: Suppose that \(A \) is an anti L-fuzzy subhemiring of a hemiring \(R \). Then for any \(x=(x_1, x_2) \) and \(y=(y_1, y_2) \) in \(R \times R \), we have \(\mu_V(x+y) = \mu_A(x_1+y_1) \lor \mu_A(x_2+y_2) \leq \{ \mu_A(x_1) \lor \mu_A(y_1) \} \lor \{ \mu_A(x_2) \lor \mu_A(y_2) \} = \mu_V((x_1, x_2) \lor \mu_V(y_1, y_2) = \mu_V(x+y) \). Therefore, \(\mu_V(x+y) \leq \mu_V(x) \lor \mu_V(y) \), for all \(x \) and \(y \) in \(R \times R \). Conversely, suppose that \(V \) is an anti L-fuzzy subhemiring of \(R \times R \), then for any \(x=(x_1, x_2) \) and \(y=(y_1, y_2) \) in \(R \times R \), we have \(\mu_V(x+y) = \mu_A(x_1+y_1) \lor \mu_A(x_2+y_2) = \mu_V(x+y) \leq \mu_V(x) \lor \mu_V(y) \). Therefore, \(\mu_V(x+y) \leq \mu_V(x) \lor \mu_V(y) \), for all \(x \) and \(y \) in \(R \times R \). Hence \(V \) is an anti L-fuzzy subhemiring of \(R \times R \).

2.5 Theorem: \(A \) is an anti L-fuzzy subhemiring of a hemiring \((R, +, .) \) if and only if \(\mu_A(x+y) \leq \mu_A(x) \lor \mu_A(y) \), \(\mu_A(xy) \leq \mu_A(x) \lor \mu_A(y) \), for all \(x \) and \(y \) in \(R \).

Proof: It is trivial.

2.6 Theorem: If \(A \) is an anti L-fuzzy subhemiring of a hemiring \((R, +, .) \), then \(H = \{ x / x \in R; \mu_A(x) = 0 \} \) is either empty or is a subhemiring of \(R \).

Proof: It is trivial.

2.7 Theorem: Let \(A \) be an anti L-fuzzy subhemiring of a hemiring \((R, +, .) \). If \(\mu_A(x+y) = 1 \), then \(\mu_A(x) = 1 \) or \(\mu_A(y) = 1 \), for all \(x \) and \(y \) in \(R \).

Proof: It is trivial.

2.8 Theorem: Let \(A \) be an anti L-fuzzy subhemiring of a hemiring \((R, +, .) \), then the pseudo anti L-fuzzy coset \((aA)^*\) is an anti L-fuzzy subhemiring of a hemiring \(R \), for every \(a \) in \(R \).

Proof: Let \(A \) be an anti L-fuzzy subhemiring of a hemiring \(R \). For every \(x \) and \(y \) in \(R \), we have \(\mu_{(aA)^*}(x+y) \leq \{ \mu_A(x) \lor \mu_A(y) \} \lor \{ \mu_A(x) \lor \mu_A(y) \} = \mu_{(aA)^*}(x+y) \). Therefore, \((aA)^* \) \((x+y) \leq \{ \mu_A(x) \lor \mu_A(y) \} \lor \{ \mu_A(x) \lor \mu_A(y) \} = \mu_{(aA)^*}(x+y) \). Therefore, \(\mu_{(aA)^*}(x+y) \leq \{ \mu_A(x) \lor \mu_A(y) \} \lor \{ \mu_A(x) \lor \mu_A(y) \} = \mu_{(aA)^*}(x+y) \). Hence \((aA)^* \) is an anti L-fuzzy subhemiring of a hemiring \(R \).

2.9 Theorem: Let \((R, +, .) \) and \((R', +, .) \) be any two hemirings. The hemomorphic image of an anti L-fuzzy subhemiring of \(R \) is an anti L-fuzzy subhemiring of \(R' \).

Proof: Let \(f : R \rightarrow R' \) be a hemomorphism. Then, \(f(x+y) = f(x) + f(y) \) and \(f(xy) = f(x)f(y) \), for all \(x \) and \(y \) in \(R \). Let \(V = f(A) \), where \(A \) is an anti L-fuzzy subhemiring of \(R \). Now, for \(f(x), f(y) \) in \(R' \), \(\mu_f(x+y) \leq \mu_f(x) \lor \mu_f(y) \), which implies that \(\mu_f(x+y) \leq \mu(f(x)) \lor \mu(f(y)) \). Again, \(\mu_f(x+y) \leq \mu(f(x)) \lor \mu(f(y)) \). Hence \(V \) is an anti L-fuzzy subhemiring of \(R' \).

2.10 Theorem: Let \((R, +, .) \) and \((R', +, .) \) be any two hemirings. The hemomorphic preimage of an anti L-fuzzy subhemiring of \(R' \) is an anti L-fuzzy subhemiring of \(R \).

Proof: Let \(V = f(A) \), where \(V \) is an anti L-fuzzy subhemiring of \(R' \). Let \(x \) and \(y \) in \(R \). Then, \(\mu_f(x+y) \leq \mu_f(x) \lor \mu_f(y) \), which implies that \(\mu_f(x+y) \leq \mu(f(x)) \lor \mu(f(y)) \). Again, \(\mu_f(x+y) \leq \mu(f(x)) \lor \mu(f(y)) \). Hence \(A \) is an anti L-fuzzy subhemiring of \(R \).

2.11 Theorem: Let \((R, +, .) \) and \((R', +, .) \) be any two hemirings. The anti-homomorphic image of an anti L-fuzzy subhemiring of \(R \) is an anti L-fuzzy subhemiring of \(R' \).

ISSN: 2250-3021 www.iosrjen.org 1421 | P a g e
Proof: Let f : R → R' be an anti-homomorphism. Then, f(x+y) = f(y) + f(x) and f(xy) = f(y)f(x), for all x and y in R. Let V = f(A), where A is an anti L-fuzzy subhemiring of R. Now, for f(x), f(y) in R', μA(xy) ≤ μA(x) μA(y) implies that μA(f(x)f(y)) ≤ μA(f(x)) ∨ μA(f(y)). Hence V is an anti L-fuzzy subhemiring of R'.

2.12 Theorem: Let (R, +, .) and (R', +, .) be any two hemirings. The anti-homomorphic preimage of an anti L-fuzzy subhemiring of R' is an anti L-fuzzy subhemiring of R.

Proof: Let V = f(A), where V is an anti L-fuzzy subhemiring of R'. Let x and y in R. Then, μA(xy) = μA(f(x+y)) ≤ μA(f(x)) ∨ μA(f(y)) = μA(x) ∨ μA(y), which implies that μA(x+y) ≤ μA(x) ∨ μA(y). Again, μA(xy) = μA(f(x)f(y)) ≤ μA(f(x)) ∨ μA(f(y)) = μA(x) ∨ μA(y), which implies that μA(f(x)f(y)) ≤ μA(x) ∨ μA(y). Hence A is an anti L-fuzzy subhemiring of R.

In the following Theorem * is the composition operation of functions

2.13 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring H and f is an isomorphism from a hemiring H onto R. Then A*f is an anti L-fuzzy subhemiring of R.

Proof: Let x and y in R. Then we have, (μA*f)(x+y) = μA(f(x)+f(y)) ≤ μA(f(x)) ∨ μA(f(y)) = (μA*f)(x) ∨ (μA*f)(y), which implies that μA*f(x+y) ≤ μA*f(x) ∨ μA*f(y). And, (μA*f)(xy) = μA(f(x)f(y)) ≤ μA(f(x)) ∨ μA(f(y)) = (μA*f)(x) ∨ (μA*f)(y), which implies that μA*f(xy) ≤ μA*f(x) ∨ μA*f(y). Therefore A*f is an anti L-fuzzy subhemiring of a hemiring R.

2.14 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring H and f is an anti-isomorphism from a hemiring H onto R. Then A*f is an anti L-fuzzy subhemiring of R.

Proof: Let x and y in R. Then we have, (μA*f)(x+y) = μA(f(x)+f(y)) ≤ μA(f(x)) ∨ μA(f(y)) = (μA*f)(x) ∨ (μA*f)(y), which implies that μA*f(x+y) ≤ μA*f(x) ∨ μA*f(y). And, (μA*f)(xy) = μA(f(x)f(y)) ≤ μA(f(x)) ∨ μA(f(y)) = (μA*f)(x) ∨ (μA*f)(y), which implies that μA*f(xy) ≤ μA*f(x) ∨ μA*f(y). Therefore A*f is an anti L-fuzzy subhemiring of a hemiring R.

2.15 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring R, A' be a L-fuzzy set in R defined by A'(x) = A(x) + 1 - A(0), for all x in R. Then A is an anti L-fuzzy subhemiring of a hemiring R.

Proof: Let x and y in R. We have, A'(x+y) = A(x+y) + 1 - A(0) ≤ (A(x) ∨ A(y)) + 1 - A(0) = A'(x) ∨ A'(y). Therefore, A'(x+y) ≤ A'(x) ∨ A'(y), for all x, y in R. Similarly, A'(xy) = A(x+y) + 1 - A(0) ≤ (A(x) ∨ A(y)) + 1 - A(0) = A'(x) ∨ A'(y). Therefore, A'(xy) ≤ A'(x) ∨ A'(y), for all x, y in R. Hence A is an anti L-fuzzy subhemiring of a hemiring R.

2.16 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring R, A' be a L-fuzzy set in R defined by A'(x) = A(x) + 1 - A(0), for all x in R. Then there exists 0 in R such that A(0) = 1 if and only if A'(x) = A(x).

Proof: It is trivial.

2.17 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring R, A' be a L-fuzzy set in R defined by A'(x) = A(x) + 1 - A(0), for all x in R. Then there exists x in R such that A'(x) = 1 if and only if x = 0.

Proof: It is trivial.

2.18 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring R, A' be a L-fuzzy set in R defined by A'(x) = A(x) + 1 - A(0), for all x in R. Then (A')* = A*.

Proof: It is trivial.

2.19 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring R, A be a L-fuzzy set in R defined by A(x) = A(0)A(x), for all x in R. Then A is an anti L-fuzzy subhemiring of the hemiring R.

Proof: For any x in R, we have A'(x+y) = A(0)A(x+y) ≤ A(0)A(x) ∨ A(0)A(y) = A'(x) ∨ A'(y), for all x, y in R. Similarly, A'(xy) = A(0)A(x+y) ≤ A(0)(A(x) ∨ A(y)) = A(0)A(x) ∨ A(0)A(y) = A'(x) ∨ A'(y). Hence A is an anti L-fuzzy subhemiring of the hemiring R.

REFERENCES