F - Contraction on Common Fixed Point Theorem in Complete b Metric Spaces

Sarika Saxena ${ }^{1}$, Abha Tenguria ${ }^{2}$
${ }^{1}$ Research Scholar, Barkatullah University Institute of Technology, Bhopal (M.P.), India 462026.
${ }^{2}$ Prof. \& Head of Mathematics in Govt. M. L. B. Girls P. G. College, Bhopal (M.P.), India 462001. Received 29 April 2020; Accepted 13 May 2020

Abstract

In this paper, using the concept of F - contraction, we first establish a unique common fixed point theorem for two self mapping on complete b-metric spaces. The results extend and generalize some results in the literature. Keywords: Complete b- metric space, common fixed points, F-contractions.

I. INTRODUCTION

In 1922, Polish mathematician Banach [5] proved a very important result regarding a contraction mapping, known as the Banach contraction principle. The Banach contraction principle is a popular tool in solving existence problems in many branches of mathematics, this result has been extended in many directions.

In 2012, Wardowski [20,21] introduced a new type of contractions called F-contraction and proved a new fixed point theorem concerning F-contraction.

In 1989, Bakhtin[6] introduced the notion of b metric space, which was formally defined by Czerwik[12] in 1993 .Fixed point theorem for various contractions in b metric spaces were discussed in [$3,4,7,8,16$]. There are many authors who have worked on the generalization of fixed point theorems in b metric spaces for example $[9,14,17,19]$.

In this paper we will apply Hardy-Rogers-type F-contraction mapping for two self mappings on complete b metric space.

The aim of this paper is to establish some new common fixed point theorems and generalize some of the results in the literature on F-contractions.

II. PRELIMINARIES

We recall some basic known definitions and results which will be used in the sequel.
Definition $2.1[6,12]$. Let X be a non-empty set and $\mathrm{s} \geq 1$ a real number. A function $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow[0, \infty)$ is called a b-metric if the following conditions are satisfied, for every $x, y, x * \in X$:
(B1) $\mathrm{d}(\mathrm{x}, \mathrm{y})=0$ if and only if $\mathrm{x}=\mathrm{y}$;
(B2) $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$;
(B3) $d(x, y) \leq s\left[d\left(x, x^{*}\right)+d\left(x^{*}, y\right)\right]$.
In this case (X, d) is called a b-metric space with constant $\mathrm{s} \geq 1$.
Example 2.2 [13].
There follow two other examples:

1. Let $\mathrm{X}=[0,2]$ and $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow[0, \infty)$ be defined by
$\mathrm{d}(\mathrm{x}, \mathrm{y})= \begin{cases}(x-y)^{2} & x, y \in[0,1] \\ \frac{1}{x^{2}}-\frac{1}{y^{2}}, & x, y \in[1,2] \\ |x-y|, & \text { Otherwise }\end{cases}$
It can easily be seen that d is a b-metric on X and so, (X, d, s) is a b-metric space
with $\mathrm{s}=2$.
2. Let $\mathrm{X}=\{1,2,3,4\}$ and define $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow[0, \infty)$ as follows:
$\mathrm{d}(\mathrm{n}, \mathrm{n})=0, \mathrm{n}=1,2,3,4$;
$\mathrm{d}(1,2)=\mathrm{d}(2,1)=2$;
$\mathrm{d}(2,3)=\mathrm{d}(3,2)=\frac{1}{2}$;
$\mathrm{d}(1,3)=\mathrm{d}(3,1)=1$;
$\mathrm{d}(1,4)=\mathrm{d}(4,1)=\frac{3}{2}$
$\mathrm{d}(2,4)=\mathrm{d}(4,2)=\mathrm{d}(3,4)=\mathrm{d}(4,3)=3$.
Then d is a b -metric with $\mathrm{s}=2$.
Lemma 2.3. [16]
If (X, d) is a b-metric space with constant $\mathrm{s} \geq 1, \mathrm{x}^{*}, \mathrm{y}^{*} \in$
X and $\left(x_{n}\right)_{n \in N}$ is a convergent sequence in X with $\lim _{n \rightarrow \infty} X_{n}=x^{*}$ then
$\frac{1}{s} \mathrm{~d}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right) \leq \lim _{n \rightarrow \infty} \inf \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}^{*}\right) \leq \lim _{n \rightarrow \infty} \sup \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}^{*}\right) \leq \operatorname{sd}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)$.
Definition 2.4. [20, 21] A function $F:(0, \infty) \rightarrow \mathbb{R}$ be a map satisfying the following conditions:
(F1) F is strictly increasing;
(F2) For each sequence $\left\{\alpha_{n}\right\}_{n \in N}$ of positive numbers $\lim _{n \rightarrow \infty} \propto_{n}=0$ if and only if
$\lim _{n \rightarrow \infty} \mathrm{~F}\left(\alpha_{\mathrm{n}}\right)=-\infty$.
(F3) There exists $\mathrm{k} \in(0,1)$ such that $\lim \propto \rightarrow_{0}^{+} \propto^{\mathrm{k}} \mathrm{F}(\propto)=0$.
For a metric space (X, d), a mapping $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ is said to be a Wardowski $\mathrm{F}-$ contraction if there exists $\tau>0$ such that $\mathrm{d}(\mathrm{Tx}, \mathrm{Ty})>0$ implies
$\tau+\mathrm{F}(\mathrm{d}(\mathrm{Tx}, \mathrm{Ty})) \leq \mathrm{F}(\mathrm{d}(\mathrm{x}, \mathrm{y}))$,
For all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.
In 2015 Cosentino et al.[10] attempted to apply Wardowski's method in the context of b metric space, by using the following additional assumption ,
(F4) Let $s \geq 1$, be a real number. For each sequence $\left\{\alpha_{n}\right\}_{n \in N}$ of positive numbers such that
$\tau+\mathrm{F}\left(\mathrm{s} \propto_{\mathrm{n}}\right) \leq \mathrm{F}\left(\propto_{\mathrm{n}-1}\right)$ for all $\mathrm{n} \in \mathrm{N}$ and some $\tau>0$ then
$\tau+\mathrm{F}\left(\mathrm{s}^{\mathrm{n}} \propto_{\mathrm{n}}\right) \leq \mathrm{F}\left(\mathrm{s}^{\mathrm{n}-1} \propto_{\mathrm{n}-1}\right)$ for all $\mathrm{n} \in \mathrm{N}$.
Definition 2.5. [16] Let (X, d) be a b-metric space with constant $s \geq 1$, and $T: X \rightarrow X$ an operator. If there exist $\tau>0$ and $F \in F_{s, \tau}$ such that for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ the inequality $\mathrm{d}(\mathrm{Tx}, \mathrm{Ty})>0$ Implies
(F) $\quad \tau+\mathrm{F}(\mathrm{s} \mathrm{d}(\mathrm{Tx}, \mathrm{Ty})) \leq \mathrm{F}(\mathrm{d}(\mathrm{x}, \mathrm{y}))$.

Then T is called an F contraction.
Theorem 2.6 [16] If (X, d) is a complete b-metric space with constant $\mathrm{s} \geq 1$ and
$\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ is an F -contraction for some $F \in F_{s, \tau}$ then T has a unique fixed point $\mathrm{x} *$. Furthermore, for any $\mathrm{x}_{0} \in \mathrm{X}$ the sequence $\mathrm{x}_{\mathrm{n}+1}=\mathrm{T} \mathrm{x}_{\mathrm{n}}$ is convergent and $\quad \lim _{\mathrm{n} \rightarrow \infty} \mathrm{X}_{\mathrm{n}}=\mathrm{x}^{*}$.
Convergent sequences and Cauchy sequences in b metric spaces, etc are defined in the same way as in metric spaces.
Motivated by these ideas, here we define a new type of F - contraction of Hardy -Rogers type for two self mappings in b metric space and prove a unique common fixed point theorem.

III. MAIN RESULTS

Definition 3.1. Let (X, D, s) be a b metric space with constant $s \geq 1$. Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \geqq 0$ real number and S and T are self mappings on X . If there exists $F \in F$ and $\tau>0$ such that for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{d}(\mathrm{Sx}, \mathrm{Ty})>0$ implies
$\tau+F(s d(S x, T y)) \leq F\left(a_{1} d(x, y)+a_{2} d(x, S x)+a_{3} d(y, T y)+a_{4} d(x, T y)+a_{5} d(y, S x)\right.$, ... (3.1)
Then T and S are called F - contraction of Hardy-Rogers-type.
Theorem 3.2. Let ($\mathrm{X}, \mathrm{D}, \mathrm{s}$) be a complete b metric space with constant $\mathrm{s} \geq 1$ and let T, S be are two self mappings on X . Assume that there exists $\mathrm{F} \in \mathrm{F}$ and $\tau>0$ such that T and S are F - contraction of Hardy-Rogerstype i.e.
$\tau+F(s d(S x, T y)) \leq F\left(a_{1} d(x, y)+a_{2} d(x, S x)+a_{3} d(y, T y)+a_{4} d(x, T y) \quad+a_{5} d(y, S x)\right.$, for all $x, y \in$ X with $d(S x, T y)>0$,
if either $a_{1}+a_{2}+a_{3}+(s+1) a_{4}<1, a_{3} \neq 1, a_{5} \geq 0$
or $a_{1}+a_{2}+a_{3}+(s+1) a_{5}<1, a_{3} \neq 1, a_{4} \geq 0$,
Then T and S have common fixed point. Moreover if $a_{1}+a_{4}+a_{5}<s$ holds as well then the common fixed point of S and T is unique.
Proof:- Let $\mathrm{x}_{0} \in \mathrm{X}$ be any point, which is arbitrary, and let,
$\mathrm{Sx}_{2 \mathrm{n}}=\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{Tx}_{2 \mathrm{n}+1}=\mathrm{x}_{2 \mathrm{n}+2}$, for all $\mathrm{n}=0,1,2, \ldots \ldots$.
Using the contractive condition (3.1) with $x_{1}=S x_{0}$, and $x_{2}=T x_{1}, \mathrm{~d}_{\mathrm{n}}=\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)$ when $n=0$, we get, $\tau+F$ ($\mathrm{s} d\left(x_{1}\right.$, $\left.\left.x_{2}\right)\right)=\tau+F\left(\mathrm{~s} d\left(S x_{0}, T x_{1}\right)\right)$
$\leq F\left(\mathrm{a}_{1} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\mathrm{a}_{2} \mathrm{~d}\left(\mathrm{x}_{0}, S \mathrm{x}_{0}\right)+\mathrm{a}_{3} \mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{Tx}_{1}\right)+\mathrm{a}_{4} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{Tx}_{1}\right)+\mathrm{a}_{5} \mathrm{~d}\left(\mathrm{x}_{1}, S \mathrm{x}_{0}\right)\right.$
$\leq F\left(\mathrm{a}_{1} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\mathrm{a}_{2} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\mathrm{a}_{3} \mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+\mathrm{a}_{4} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{2}\right)+\mathrm{a}_{5} \mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{1}\right)\right.$
$\leq F\left(\mathrm{a}_{1} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\mathrm{a}_{2} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\mathrm{a}_{3} \mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+\mathrm{a}_{4}\left(\mathrm{sd}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\mathrm{sd}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right)\right.$
$\left.\leq F\left(\left(\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{sa}_{4}\right) \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\left(\mathrm{a}_{3}+\mathrm{sa}_{4}\right)\right)$
$\tau+F\left(\operatorname{sd}_{1}\right) \leq F\left(\left(\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{sa}_{4}\right) \mathrm{d}_{0}+\mathrm{d}_{1}\left(\mathrm{a}_{3}+\mathrm{sa}_{4}\right)\right)$
since F is strictly increasing, it follows that

$$
s d_{1}<\left(a_{1}+a_{2}+s a_{4}\right) d_{0}+d_{1}\left(a_{3}+s a_{4}\right)
$$

Thus for every $\mathrm{n} \geq \mathrm{n}_{0}$ we have
$\mathrm{s}\left(1-\frac{a 3}{s}-\mathrm{a}_{4}\right) \mathrm{d}_{1}<\left(a_{1}+a_{2}+\mathrm{s} a_{4}\right) d_{1}$
In the case when $a_{1}+a_{2}+a_{3}+(s+1) a_{4}<1$ holds we obtain
$\left.\left(1-\frac{a 3}{s}-\mathrm{a}_{4}\right) \geq 1-a_{3}-a_{4}\right)>a_{1}+a_{2}+\mathrm{s} a_{4} \geq 0$
In the other case when $a_{1}+a_{2}+a_{3}+(s+1) a_{5}<1$ holds, we obtain the same inequality by changing the sequence
And hence $\mathrm{s} \mathrm{d}_{1}<\mathrm{d}_{0}$ for every $\mathrm{n} \in \mathrm{N}$ we can now use inequality and write
$F\left(\mathrm{~s}_{1}\right) \leq \mathrm{F}\left(\mathrm{d}_{0}\right)-\tau$ for all n in N
Similarly we get
$\tau+F\left(\mathrm{sd}\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right)\right) \leq F\left(\mathrm{a}_{1} \mathrm{~d}\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right)\right)+\mathrm{a}_{2} \mathrm{~d}\left(\mathrm{x}_{2}, \mathrm{Sx}_{2}\right)+\mathrm{a}_{3} \mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{~T} \mathrm{x}_{1}\right) \quad+\mathrm{a}_{4} \mathrm{~d}\left(\mathrm{x}_{2} \mathrm{Tx}_{1}\right)+\mathrm{a}_{5} \mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{Sx}_{2}\right)$
$\tau+F\left(\mathrm{sd}\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right)\right) \leq F\left(\mathrm{a}_{1} \mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right)+\mathrm{a}_{2} \mathrm{~d}\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right)+\mathrm{a}_{3} \mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+\mathrm{a}_{4} \mathrm{~d}\left(\mathrm{x}_{2}, \mathrm{x}_{2}\right)+\mathrm{a}_{5} \mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{3}\right)$
$\tau+F\left(\mathrm{sd}\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right)\right)=F\left(\mathrm{a}_{1} \mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right)+\mathrm{a}_{2} \mathrm{~d}\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right)+\mathrm{a}_{3} \mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \quad+\mathrm{a}_{5}\left\{\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+\mathrm{d}\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right)\right\}$
$\tau+F\left(\operatorname{sd}\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right)\right) \leq F\left(\mathrm{a}_{1} \mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right)+\mathrm{a}_{2} \mathrm{~d}\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right)+\mathrm{a}_{3} \mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \quad+\mathrm{a}_{5}\left\{\operatorname{sd}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+\mathrm{d}\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right)\right\}$
$\tau+F\left(\operatorname{sd}\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right)\right) \leq F\left(\mathrm{a}_{1}+\mathrm{a}_{3}+\mathrm{sa}_{5}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+\left(\mathrm{a}_{2}+\mathrm{sa}_{5}\right) \mathrm{d}\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right)$
$\tau+F\left(\mathrm{sd}_{2}\right) \leq\left(\mathrm{a}_{1}+\mathrm{a}_{3}+\mathrm{sa}_{5}\right) \mathrm{d}_{1}+\left(\mathrm{a}_{2}+\mathrm{sa}_{5}\right) \mathrm{d}_{2}$
since F is strictly increasing, and again by the same argument, this follows that
$s d_{2}<\left(a_{1}+a_{3}+s a_{5}\right) d_{1}+\left(a_{2}+s a_{5}\right) d_{2}$
$\mathrm{s}\left(1-\frac{a_{2}}{s}-\mathrm{a}_{5}\right) \mathrm{d}_{2}<\left(\mathrm{a}_{1}+\mathrm{a}_{3}+\mathrm{sa}_{5}\right) \mathrm{d}_{1}$
$\mathrm{s} \mathrm{d}_{2}<\mathrm{d}_{1}$
for every $\mathrm{n} \in \mathrm{N}$ we can now use inequality and write
$F\left(\mathrm{~s}_{2}\right) \leq F\left(\mathrm{~d}_{1}\right)-\tau$
Similarly we can find
$F\left(\mathrm{~s}_{3}\right) \leq F\left(\mathrm{~d}_{2}\right)-\tau$
Continuing in this way we will have
$F\left(\mathrm{~s} d_{\mathrm{n}}\right) \leq F\left(\mathrm{~d}_{\mathrm{n}-1}\right)-\tau$ for all $n \in N$
By condition F 4 we have
$F\left(\mathrm{~s}^{\mathrm{n}} \mathrm{d}_{\mathrm{n}}\right) \leq F\left(\mathrm{~s}^{\mathrm{n}-1} \mathrm{~d}_{\mathrm{n}-1}\right)-\tau$ for all $\mathrm{n} \in N$ and hence by induction
$F\left(\mathrm{~s}^{\mathrm{n}} \mathrm{d}_{\mathrm{n}}\right) \leq F\left(\mathrm{~s}^{\mathrm{n}-1} \mathrm{~d}_{\mathrm{n}-1}\right)-\tau \leq \ldots \ldots \ldots \leq F\left(\mathrm{~d}_{0}\right)-\mathrm{n} \tau$
In the limit as $\mathrm{n} \rightarrow \infty$, we get
$\lim _{\mathrm{n} \rightarrow \infty} F\left(\mathrm{~s}^{\mathrm{n}} \mathrm{d}_{\mathrm{n}}\right)=-\infty$ by F2
$\lim _{n \rightarrow \infty}^{n \rightarrow \infty}\left(s^{n} d_{n}\right)=0$
From condition (F3), there exists $k \in(0,1)$ such that
$\lim _{n \rightarrow \infty}\left(s^{n} d_{n}\right)^{k} F\left(s^{n} d_{n}\right)=0$
Multiplication of (3.2) with $\left(s^{n} d_{n}\right)^{k}$ yields
$0 \leq\left(\mathrm{s}^{\mathrm{n}} \mathrm{d}_{\mathrm{n}}\right)^{\mathrm{k}} F\left(\mathrm{~s}^{\mathrm{n}} \mathrm{d}_{\mathrm{n}}\right)+\mathrm{n}\left(\mathrm{s}^{\mathrm{n}} \mathrm{d}_{\mathrm{n}}\right)^{\mathrm{k}} \tau \leq\left(\mathrm{s}^{\mathrm{n}} \mathrm{d}_{\mathrm{n}}\right)^{\mathrm{k}} F\left(\mathrm{~d}_{0}\right)$
Taking the limit as $\mathrm{n} \rightarrow \infty$, we get
$\lim _{\mathrm{n} \rightarrow \infty} \mathrm{n}\left(\mathrm{s}^{\mathrm{n}} \mathrm{d}_{\mathrm{n}}\right)^{\mathrm{k}}=0$
Now, following the proof of Theorem 3.2 in [16], we can show that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since (X, d, s) is complete, there exists $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$
Applying Lemma 2.3, we get
$\lim _{\mathrm{n} \rightarrow \infty} \mathrm{d}\left(\mathrm{x}^{*}, \mathrm{x}_{\mathrm{n}}\right)=\lim \sup \mathrm{d}\left(\mathrm{x}^{*}, \mathrm{x}_{\mathrm{n}}\right) \leq \operatorname{sd}\left(\mathrm{x}^{*}, \mathrm{x}^{*}\right)=0$.
It remains to show that x^{*} is a common fixed point of S and T.first we show that x^{*} is a fixed point of S.,
Also, using (3.1), we have for all $\mathrm{n} \in \mathrm{N}$
$\tau+F\left(\operatorname{sd}\left(\mathrm{Sx}^{*}, \mathrm{x}_{2 \mathrm{n}+2}\right)=\tau+F\left(\operatorname{sd}\left(\mathrm{Sx}^{*}, \mathrm{Tx}_{2 \mathrm{n}+1}\right) \leq \mathrm{a}_{1} \mathrm{~d}\left(x^{*}, x_{2 n+1}\right)+a_{2} \mathrm{~d}\left(\mathrm{x}^{*}, \mathrm{Sx} *\right)+\mathrm{a}_{3} d\left(x_{2 n+1}, \mathrm{Tx}_{2 \mathrm{n}+1}\right)+\mathrm{a}_{4} \mathrm{~d}\right.\right.$ $\left(\mathrm{x}^{*}, \mathrm{Tx}_{2 \mathrm{n}+1}\right)+\mathrm{a}_{5}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{Sx} *\right)$
$\leq F\left(\mathrm{a}_{1}\left(\mathrm{~d}\left(\mathrm{x}^{*}, \mathrm{x}_{2 \mathrm{n}+1}\right)+\mathrm{a}_{2} \mathrm{~d}\left(\mathrm{x}^{*}, S \mathrm{x}^{*}\right)+\mathrm{a}_{3} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+2}\right)+\mathrm{a}_{4}\left(\mathrm{x}^{*}, \mathrm{x}_{2 \mathrm{n}+2}\right) \quad+\mathrm{a}_{5}\left(\mathrm{x}_{2 \mathrm{n}+1}, S \mathrm{~S}^{*}\right)\right.\right.$

Hence letting $n \rightarrow \infty$, we get (since $\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{x}_{\mathrm{n}}\right) \rightarrow 0$)
$\tau+\lim _{\mathrm{n} \rightarrow \infty} F\left(\mathrm{sd}\left(\mathrm{Sx}^{*}, \mathrm{x}_{2 \mathrm{n}+2}\right) \leq-\infty\right.$ This implies
$\lim _{n \rightarrow \infty} d\left(S x^{*}, x_{2 n+2}\right)=0$ This implies
d $\left(\mathrm{Sx}^{*}, \mathrm{x}^{*}\right)=0$
Thus we have, $S x^{*}=x^{*} \cdot \mathrm{X}^{*}$ is a fixed point of S . We also show that x^{*} is a fixed point of T. By proposition, we have
$\tau+F\left(\operatorname{sd}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{Tx}^{*}\right)=\tau+F\left(\operatorname{sd}\left(\mathrm{Sx}_{2 \mathrm{n}}, \mathrm{Tx}^{*}\right)\right.\right.$
$\leq F\left(\mathrm{a}_{1} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}^{*}\right)\right)+\mathrm{a}_{2} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, S \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{a}_{3} \mathrm{~d}\left(\mathrm{x}^{*}, T \mathrm{x}^{*}\right)+\mathrm{a}_{4} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, T \mathrm{x}^{*}\right) \quad+\mathrm{a}_{5} \mathrm{~d}\left(\mathrm{x}^{*}, S \mathrm{Sx}_{2 \mathrm{n}}\right)$
$\leq F\left(\mathrm{a}_{1} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}^{*}\right)\right)+\mathrm{a}_{2} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right)+\mathrm{a}_{3} \mathrm{~d}\left(\mathrm{x}^{*}, \mathrm{Tx}^{*}\right)+\mathrm{a}_{4} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{Tx}^{*}\right) \quad+\mathrm{a}_{5} \mathrm{~d}\left(\mathrm{x}^{*}, \mathrm{x}_{2 \mathrm{n}+1}\right)$
Letting $\mathrm{n} \rightarrow \infty$, we get
$\tau+\lim _{\mathrm{n} \rightarrow \infty} F\left(\operatorname{sd}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{Tx} *\right) \leq-\infty\right.$.
This implies
$\lim _{\mathrm{n} \rightarrow \infty} \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{Tx} *\right)=0$.
$\Rightarrow \mathrm{d}\left(\mathrm{x}^{*}, \mathrm{Tx} *\right)=0$.Thus we have, $\mathrm{Tx} * \mathrm{x}^{*} . \mathrm{x}^{*}$ is a fixed point of T . Therefore x^{*} is a common fixed point of S , T.

To show the uniqueness of the fixed point, suppose that, u be another common fixed point of S, T
$\mathrm{u}=\mathrm{Su}=\mathrm{Tu}$ and $\mathrm{x}^{*}=\mathrm{Tx} *=\mathrm{Sx}^{*}$
with $x^{*} \neq \mathrm{u}$. Then from (3.1)
$\tau+F\left(\operatorname{sd}\left(S u, T x^{*}\right) \leq F\left(\mathrm{a}_{1} \mathrm{~d}\left(\mathrm{u}, \mathrm{x}^{*}\right)+\mathrm{a}_{2} \mathrm{~d}(\mathrm{u}, \mathrm{su})+\mathrm{a}_{3} \mathrm{~d}\left(\mathrm{x}^{*}, \mathrm{Tx} *\right) \quad+\mathrm{a}_{4} \mathrm{~d}(\mathrm{u}, \mathrm{Tx} *)+\mathrm{a}_{5} \mathrm{~d}\left(\mathrm{x}^{*}, \mathrm{Su}\right)\right)\right.$
$\leq F\left(\mathrm{a}_{1} \mathrm{~d}\left(\mathrm{u}, \mathrm{x}^{*}\right)+\mathrm{a}_{4} \mathrm{~d}\left(\mathrm{u}, \mathrm{Tx}^{*}\right)+\mathrm{a}_{5} \mathrm{~d}\left(\mathrm{u}, \mathrm{x}^{*}\right)\right)$
$\leq F\left(\left(\mathrm{a}_{1}+\mathrm{a}_{4}+\mathrm{a}_{5}\right) \mathrm{d}\left(\mathrm{u}, \mathrm{x}^{*}\right)\right)$
This implies that
$F\left(\operatorname{sd}\left(\mathrm{u}, \mathrm{x}^{*}\right)\right)<F\left(\mathrm{~d}\left(\mathrm{u}, \mathrm{x}^{*}\right)\right)$
which is a contradiction. Thus S and T have a unique common fixed point. This proves the result.

REFERENCES

[1]. Ahmad et al. Fixed Point Theory and Application (2015) 2015:80.
[2]. H.H. Alsulami, E. Karapinar, H. Piri, Fixed points of generalised F-Suxuki type contraction incomplete b-metric spaces, Discrete Dynamics in Nature and Society, 2015, 8 pages.
[3]. H. Aydi, M.F. Bota, E. Karapinar, S. Mitrovic, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., 88(2012), 8 pages.
[4]. H. Aydi, M.F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak ϕ-contractions on b-metric spaces, Fixed Point Theory, 13(2012), no. 2, 337-346.
[5]. S. Banach, Sur les operations dans les ensemble abstraits et leur application aux equations integrales, Fundamental Mathematicae 3(1922) 133-181.
[6]. Bakhtin, I.A.: The contraction mapping principle in almost metric spaces. Funct. Anal. 30, 26-37 (1989).
[7]. M.F. Boriceanu, M. Bota, A. Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J.Math., 8(2010), no. 2, 367-377.
[8]. C. Chifu, G. Petrusel, Fixed points for multivalued contractions in b-metric spaces with application to fractals, Taiwanese J. Math., 18(2014), no. 5, 1365-1375.
[9]. L.B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45(1974), 267273.
[10]. M. Cosentino, M. Jleli, B. Samet, C. Vetro, Solvability of integrodifferential problems via fixed point theory in b-metric spaces, Fixed Point Theory Appl., 70(2015), 15 pages.
[11]. M. Cosentino, P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat, 28(2014), no. 4, 715-722.
[12]. S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1(1993), 511.
[13]. Nilakshi Goswami, Nehjamang Haokip and Vishnu Narayan Mishra, F-contractive type mapping in Bmetric spaces and some related fixed point results. Fixed Point theory and applications, 2019, 1-17.
[14]. G.E. Hardy, T.D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16(1973), no. 2, 201-206.
[15]. W. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces, Springer International Publishing Switzerland, 2014.
[16]. Lukacs, A., Kajanto, S.: Fixed point theorems for various types of F-contractions in complete b-metric spaces. Fixed Point Theory 19(1), 321-334 (2018).
[17]. S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14(1971), no. 1, 121-124.
[18]. I.A. Rus, M.A. Serban, Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem, Carpathian J. Math., 29(2013), no. 2, 239-258.
[19]. T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136(2008), 1861-1869.
[20]. D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Applications, 94(2012), 6 pages.
[21]. D. Wardowski, Fixed points of F-weak contractions on complete metric spaces, Demonstration Math., 47(2014), no. 1, 146-155.

[^0]
[^0]: Sarika Saxena, et. al. "F - Contraction on Common Fixed Point Theorem in Complete b - Metri Spaces." IOSR Journal of Engineering (IOSRJEN), 10(5), 2020, pp. 24-28.

