

Some remarks on convergence of measures

Xiangfeng Yang¹ Zhenxia Liu²

1. Hubei University of Arts and Science, and Tulane University 2. University of Idaho

ABSTRACT

In engineering and applied mathematics, the theory of convergence of probability measures related to stochastic processes plays an important role. In this note, we show that under a suitable condition, the weak convergence of measures is equivalent to setwise convergence of measures.

Keywords - weak convergence, setwise convergence

I. INTRODUCTION

A sequence of measures $\{u_n, n = 1, 2, ...\}$ on a sigma algebra B_X of Borel subsets of a metric space X converges weakly to a measure u on B_X if for any bounded continuous function f on X (see [1])

 $\lim_{n\to\infty}\int_X f(x)u_n(dx) = \int_Y f(x)u(dx).$

The weak convergence is equivalent to the following statement: for any u – continuity set $A \in B_x$ (i.e. a set such that $u(\partial A) = 0$),

 $\lim u_n(A) = u(A).$

A natural question arises: when will the setwise convergence holds, that is, for any $A \in B_{\chi}$, we always have $\lim u_n(A) = u(A)$? This note gives such a criteria to guarantee the equivalence between the weak convergence and setwise convergence.

II. THE MAIN RESULT

Theorem 1: Let (X, B_x) be any metric space, where B_x is the Borel sigma algebra. Suppose $\{u_n, n = 1, 2, ...\}$ is a sequence of measures on (X, B_x) , and u, λ are two finite measures on (X, B_x) . Assume that $\{u_n\}$ weakly converge to u and $\sup u_n \leq \lambda$. Then we have

$$\lim_{n\to\infty}u_n(\Gamma)=u(\Gamma) \text{ for any } \Gamma\in B_X.$$

Proof: We will prove this theorem in two steps. The first step is to show that for any closed set $\Gamma \in B_X$,

$$\lim_{n\to\infty}u_n(\Gamma)=u(\Gamma).$$

To see this, we choose a sequence of bounded and continuous functions $\{f_k(x)\}\$ on X such that

$$\lim_{k \to \infty} f_k(x) = \mathbf{1}_{\Gamma}(x), \text{ for any } x \in X.$$

For example, we can choose

$$f_k(x) = (\exp\{-\rho(x,\Gamma)\})^k,$$

where ρ is the metric defined on X. Now

$$u_n(\Gamma) = \int_X \mathbf{1}_{\Gamma}(x)u_n(dx) = \int_X \lim_{k \to \infty} f_k(x)u_n(dx)$$
$$= \lim_{k \to \infty} \int_X f_k(x)u_n(dx).$$
What's more.

$$\lim_{n \to \infty} u_n(\Gamma) = \lim_{n \to \infty} \lim_{k \to \infty} \int_X f_k(x) u_n(dx)$$
$$= \lim_{k \to \infty} \lim_{n \to \infty} \int_X f_k(x) u_n(dx) = \lim_{k \to \infty} \int_X f_k(x) u(dx)$$
$$= u(\Gamma)$$

where the second equality comes from the lemma at the end of this section, since $\lim_{k\to\infty}\int_X f_k(x)u_n(dx)$ exists uniformly in n by noticing the following fact $\left|\int_{X} f_{k}(x)u_{n}(dx) - \int_{X} 1_{\Gamma}(x)u_{n}(dx)\right|$ $\leq \int_{Y} |f_k(x) - \mathbf{1}_{\Gamma}(x)| u_n(dx)$ $\leq \int_{Y} |f_k(x) - \mathbf{1}_{\Gamma}(x)| \lambda(dx) \to 0.$

The second step is to show that for any set $\Gamma \in B_X$, $\lim_{n \to \infty} u_n(\Gamma) = u(\Gamma).$ We will use $\pi - \lambda$ argument to prove this. Let's define

$$A_{1} = \{ \Gamma : \Gamma \text{ is closed in } X \},\$$
$$A_{2} = \{ \Gamma : \lim_{n \to \infty} u_{n}(\Gamma) = u(\Gamma) \}.$$
It is obvious that A_{1} is a π class. Now we prove the

It is obvious that A_1 is a π class. Now we prove that A_2 is a λ class. First, by the definition of weak convergence, we have $\lim_{n\to\infty} u_n(X) = u(X)$, thus the whole space $X \in A_2$. Second, the set A_2 is obviously closed under the operation of disjoint unions. Third, if $\Gamma_1, \Gamma_2 \in A_2$ and $\Gamma_1 \supseteq \Gamma_2$, then $\lim_{n\to\infty} u_n(\Gamma_1, -\Gamma_2) = \lim_{n\to\infty} [u_n(\Gamma_1) - u_n(\Gamma_2)]$

$$\lim_{n\to\infty} u_n(\Gamma_1 - \Gamma_2) = \lim_{n\to\infty} [u_n(\Gamma_1) - u_n(\Gamma_2)]$$
$$= u(\Gamma_1) - u(\Gamma_2).$$

Last, for a sequence of non-decreasing sets $\{\Gamma_n\}$,

$$\lim_{n \to \infty} u_n (\bigcup_{m=1}^{\infty} \Gamma_m) = \lim_{n \to \infty} \lim_{k \to \infty} u_n (\bigcup_{m=1}^{k} \Gamma_m)$$
$$= \lim_{n \to \infty} \lim_{k \to \infty} u_n (\Gamma_k) = \lim_{k \to \infty} \lim_{n \to \infty} u_n (\Gamma_k)$$
$$= \lim_{k \to \infty} u(\Gamma_k) = u(\bigcup_{m=1}^{\infty} \Gamma_m),$$

thus $\bigcup_{m=1} \Gamma_m \in A_2$. Again, the third equality in the above equation is from the lemma below since $\lim_{k\to\infty} u_n(\Gamma_k)$ exists uniformly in n,

$$\left| u_n(\Gamma_k) - u_n\left(\bigcup_{m=1}^{\infty} \Gamma_m \right) \right| = u_n\left(\bigcup_{m=k+1}^{\infty} \Gamma_m \right)$$

$$\leq \lambda \left(\bigcup_{m=k+1}^{\infty} \Gamma_m \right) \to 0.$$

Thus A_2 is a λ class containing π class A_1 , so $A_2 \supseteq \sigma(A_1) = B_X$. The proof is thus complete.

Lemma 1: Let f(x, y) be a real valued function. Suppose that for every x, the limit $\lim_{y \to y_0} f(x, y)$ exists, and the limit $\lim_{x \to x_0} f(x, y)$ exists uniformly in y. Assume that $\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = c$, then

 $\lim_{y\to y_0}\lim_{x\to x_0}f(x,y)=\lim_{x\to x_0}\lim_{y\to y_0}f(x,y)=c.$

Proof: For any $\varepsilon > 0$, from the fact that $\lim_{x \to x_0} f(x, y) = g(y)$ uniformly in *y*, we have some $\delta_1(\varepsilon) > 0$ such that for $|x - x_0| < \delta_1(\varepsilon)$,

$$|f(x, y) - g(y)| < \varepsilon.$$

The assumption $\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = c$ implies there is $\delta_2(\varepsilon) > 0$ such that for $|x - x_0| < \delta_2(\varepsilon)$,

$$\left|\lim_{y\to y_0}f(x,y)-c\right|<\varepsilon.$$

We now choose a point x_1 such that

$$|x_1 - x_0| < \min\{\delta_1(\varepsilon), \delta_2(\varepsilon)\}.$$

That $\lim_{y \to y_0} f(x_1, y)$ exists implies there is $\delta_3(\varepsilon) > 0$ such that for $|y - y_0| < \delta_3(\varepsilon)$,

$$\left|f(x_1, y) - \lim_{y \to y_0} f(x_1, y)\right| < \varepsilon.$$

Thus for any $|y - y_0| < \delta_3(\varepsilon)$,

$$\begin{aligned} & \left| g(y) - c \right| \\ \leq & \left| g(y) - f(x_1, y) + f(x_1, y) - \lim_{y \to y_0} f(x_1, y) + \lim_{y \to y_0} f(x_1, y) \right| \\ < 3\varepsilon. \end{aligned}$$

REFERENCES

[1] P. Billingsley, *Convergence of probability measures* (New York: John Wiley & Sons Inc, 1999).