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ABSTRACT 

In engineering and applied mathematics, the theory of convergence of probability measures related to stochastic processes 
plays an important role. In this note, we show that under a suitable condition, the weak convergence of measures is 
equivalent to setwise convergence of measures.  
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I. INTRODUCTION 

A sequence of measures { , 1,2,...}nu n   on a sigma 

algebra XB of Borel subsets of a metric space X converges 

weakly to a measure u on XB if for any bounded continuous 

function f on X (see [1]) 

lim ( ) ( ) ( ) ( ).n
X Xn

f x u dx f x u dx


   

The weak convergence is equivalent to the following 

statement: for any u  continuity set XA B  (i.e. a set 

such that  ( ) 0u A  ), 

lim ( ) ( ).n
n

u A u A


  

A natural question arises: when will the setwise 

convergence holds, that is, for any XA B , we always 

have lim ( ) ( )?n
n

u A u A


 This note gives such a criteria to 

guarantee the equivalence between the weak convergence 
and  setwise convergence. 

II. THE MAIN RESULT  

Theorem 1: Let ( , )XX B  be any metric space, where XB  

is the Borel sigma algebra. Suppose { , 1,2,...}nu n   is a 

sequence of measures on ( , )XX B , and ,u   are two finite 

measures on ( , )XX B .Assume that { }nu  weakly converge 

to u  and sup n
n

u  . Then we have 

lim ( ) ( )n
n

u u


    for any .XB  

Proof: We will prove this theorem in two steps. The first 

step is to show that for any closed set ,XB  

lim ( ) ( ).n
n

u u


    

To see this, we choose a sequence of bounded and 

continuous functions { ( )}kf x  on X  such that  

lim ( ) 1 ( ),k
k

f x x


  for any .x X  

For example, we can choose  

( ) (exp{ ( , )}) ,k

kf x x    

where   is the metric defined on .X  Now 

( ) 1 ( ) ( ) lim ( ) ( )

lim ( ) ( ).

n n k n
X X k

k n
Xk

u x u dx f x u dx

f x u dx






  



 


 

What's more,  

lim ( ) lim lim ( ) ( )

lim lim ( ) ( ) lim ( ) ( )

( )

n k n
Xn n k

k n k
X Xk n k

u f x u dx

f x u dx f x u dx

u

  

  

 

 

 



   

where the second equality comes from the lemma at the end 

of this section, since lim ( ) ( )k n
Xk

f x u dx
   exists uniformly 

in n  by noticing the following fact 

( ) ( ) 1 ( ) ( )

( ) 1 ( ) ( )

( ) 1 ( ) ( ) 0.

k n n
X X

k n
X

k
X

f x u dx x u dx

f x x u dx

f x x dx









 

  

 





 

The second step is to show that for any set ,XB  

lim ( ) ( ).n
n

u u


    

We will use    argument to prove this. Let's define 
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1

2

:  is closed in ,

: lim ( ) ( ) .n
n

X

u u


  

    

A

A
 

It is obvious that 1A  is a   class. Now we prove that 2A  

is a   class. First, by the definition of weak convergence, 

we have lim ( ) ( ),n
n

u X u X


  thus the whole space 

2.X A  Second, the set 2A is obviously closed under the 

operation of disjoint unions. Third, if 1 2 2  , A  and 

1 2 ,   then  

1 2 1 2

1 2

lim ( ) lim[ ( ) ( )]

( ) ( ).

n n n
n n

u u u

u u

 
     

   
 

Last, for a sequence of non-decreasing sets { }n ,  

1 1

1

lim ( ) lim lim ( )

lim lim ( ) lim lim ( )

lim ( ) ( ),

k

n m n m
n m n k m

n k n k
n k k n

k m
k m

u u

u u

u u



    

   



 

    

   

    

 

thus 
2

1
.m

m




  A  Again, the third equality in the above 

equation is from the lemma below since lim ( )n k
k

u


  exists 

uniformly in ,n  

1 1

1

( )

0.

n k n m n m
m m k

m
m k

u u u



 

  



 

   
         

   

 
    

 

 

Thus 2A  is a   class containing   class 1A , so 

2 1( ) .XB A A  

The proof is thus complete. 

Lemma 1: Let ( , )f x y  be a real valued function. 

Suppose that for every ,x  the limit 
0

lim ( , )
y y

f x y


 exists, 

and the limit 
0

lim ( , )
x x

f x y


 exists uniformly in .y  Assume 

that 
0 0

lim lim ( , )
x x y y

f x y c
 

 , then 

0 0 0 0

lim lim ( , ) lim lim ( , ) .
y y x x x x y y

f x y f x y c
   

   

Proof: For any 0,   from the fact that 

0

lim ( , ) ( )
x x

f x y g y


  uniformly in ,y  we have some 

1( ) 0    such that for 0 1| | ( ),x x     

| ( , ) ( ) | .f x y g y    

The assumption
0 0

lim lim ( , )
x x y y

f x y c
 

  implies there is 

2 ( ) 0    such that for 0 2| | ( ),x x     

0

lim ( , ) .
y y

f x y c 


   

We now choose a point 1x  such that  

1 0 1 2| | min{ ( ), ( )}.x x       

That 
0

1lim ( , )
y y

f x y


 exists implies there is 3( ) 0    such 

that for 0 3| | ( ),y y     

0
1 1( , ) lim ( , ) .

y y
f x y f x y 


   

Thus for any 0 3| | ( ),y y     

0 0

1 1

1 1

( )

( ) ( , ) ( , )

       lim ( , ) lim ( , )

3 .

y y y y

g y c

g y f x y f x y

f x y f x y
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