

Extremal Solutions of Boundary Value Problems Using Fixed Point Theorems

V. C. Borkar

Department of Mathematics, Yeshwant Mahavidyalaya, Nanded 431605, INDIA

ABSTRACT

Existence of extremal fixed points of A + B is obtained in ordered Banach spaces. Some applications to two-point boundary value problems in ordinary differential equations are discussed.

AMS (MOS) 2000 Subject classifications: 34 A 40, 34 B15.

1. INTRODUCTION

Krasnoselskii [2] proved the existence of fixed points of A + B in closed convex Banach spaces while many mathematician had obtained its extremal fixed points in ordered Banach spaces. Here we generalize some results of [1.

Let X be a Banach space and K a cone in X. Let \leq be a partial ordering defined by K i.e. for x, y in X, $x \leq y$ if $y - x \in K$. A cone K is said to be regular, if every increasing and bounded in order sequence has a limit and normal if there exists N > 0 such that $0 \le x \le y$ implies $||x|| \le N ||y||$. The details about cone and their properties may be found in [1].

Let $x_0, y_0 \in X$ with $x_0 \le y_0$, the set $[x_0, y_0] = \{x \in X : x_0 \le x \le y_0\}$

is called order interval in X.

A mapping T: D \subset X \rightarrow X is said to be increasing if $x_1 \leq x_2$ implies

T $X_1 \leq T X_2$. T is said to be a nonlinear contraction if there exist a lower semi continuous real function ϕ with ϕ (r) < r, r > 0.000 cm s = 0.0000 cm s = 0.00000 cm s = 0.0000 cm s = 0.0000 cm s = 0.0000 cm s = 0.000 0 satisfying

(1)

 $||Tx - Ty|| \le \phi(||x - y||)$, for all x, y in D.

A mapping T is said to be condensing if $\gamma(T(S)) < \gamma(S)$ where $S \subset D$ and γ is Kuratowskii's measure of noncompactness. It is evident that if T is completely continuous then it is condensing.

FIXED POINT THEOREMS. 2.

Theorem 2.1: Let $x_0, y_0 \in X$, $x_0 < y_0$ and $A, B: [x_0, y_0] \rightarrow X$ satisfy the following conditions:

- (H_1) A is a nonlinear contraction,
- (H₂) $Ax + By \in [x_0, y_0]$ for $x, y \in [x_0, y_0]$
- (H_3) $(I A)^{-1}B$ is increasing where I denote an identity operator
- (H₄) B is semi continuous i.e. $x_n \rightarrow x$ strongly
 - \Rightarrow Bx_n \rightarrow Bx weakly.

Suppose that the cone K in the Banach space X is regular. Then the mapping A + B has maximal and minimal fixed points in $[x_0, y_0]$.

(2)

Proof: Assume $T = (I - A)^{-1}B$, the existence of T is guaranteed by hypothesis (H₁). Claim that T maps [x₀, y₀] into itself. For fixed $y \in [x_0, y_0]$ define a mapping A_y on $[x_0, y_0]$ by

 $A_{v}(x) = Ax + By$

where $x \in [x_0, y_0]$. Hypothesis (H₂) implies that A_y maps $[x_0, y_0]$ into itself moreover for $x_1, x_2 \in [x_0, y_0]$ $||A_{y}(x_{1}) - A_{y}(x_{2})|| \leq \phi (||x_{1} - x_{2}||)$

and hence A_y is a nonlinear contraction. Therefore A_y has a unique fixed point $y' \in [x_0, y_0]$ such that $A_y(y') = y'$. Now for $x \in [x_0, y_0]$,

$$Tx = y \implies Ay + Bx = y \implies A_x (y) = y$$

But A_x has unique fixed point in $[x_0, y_0]$ and hence $Tx \in [x_0, y_0]$. Therefore T maps $[x_0, y_0]$ into itself.

Now consider the sequences $\{x_n\}$ and $\{y_n\}$ defined by

 $x_{n+1} = Tx_n$ and $y_{n+1} = Ty_n$ (3)

Hypothesis (H₃) implies that

 $x_0 \le x_1 \le x_2 \le \dots \le x_n \le \dots \le y_n \le \dots \dots \le y_1 \le y_0$ (4) Since K is regular and sequences $\{x_n\}$ and $\{y_n\}$ are bounded in order, these sequences converge to x^* and y^* respectively. Hypothesis (H₄) implies that T is semi continuous and so $Tx^* = x^*$ and $Ty^* = y^*$. The fixed points of T are also fixed points of A + B. Therefore x^* and y^* are fixed points of A+B.

If x is any fixed point of A + B then $x_0 \le x \le y_0$. Since T is increasing, $x_1 \le x \le y_1$, and by induction $x_n \le x \le y_n$ for n = 0,1,2,3... Taking the limits, we obtain $x^* \le x \le y^*$. Thus x^* and y^* are minimal and maximal fixed points of A + B. This completes the proof.

Corollary 2.1: Let the conditions of Theorem 2.1 be satisfied. Suppose A + B has only one fixed point x in $[x_0,y_0]$. Then for any $u_0 \in [x_0,y_0]$, the sequence

$$u_{n+1} = Au_{n+1} + Bu_{n.}$$
 (5)

converges to x. i.e. $|| u_n - x || \to 0 \quad (n \to \infty)$.

Proof: Define a mapping T on $[x_0, y_0]$ as in Theorem 2.1. Then the sequence (5) can be obtained as the successive iterates $u_{n+1} = Tu_n$.

Since $x_0 \le u_0 \le y_0$ and T is increasing, $x_n \le u_n \le y_n$. By hypothesis, x is the only fixed point of T and hence $x^* = x = y^*$ where x^* and y^* are limits of sequences $\{Tx_n\}$ and $\{Ty_n\}$. Cone K is regular implies that K is normal. So by normality of cone and Theorem 2.1, it follows that $u_n \rightarrow x$.

Theorem 2.2: Let the conditions (H_1) and (H_2) of Theorem 2.1 be satisfied. If B is completely continuous and K is normal then A + B has a fixed point in $[x_0, y_0]$.

Proof: Define a mapping T as in Theorem 2.1. Therefore T maps $[x_0, y_0]$ into itself. Since $(I - A)^{-1}$ is continuous and B is completely continuous, T is also completely continuous. Moreover K is normal and hence order interval $[x_0, y_0]$ is closed convex and bounded. Existence of fixed point of T is now guaranteed by Schauder's theorem. Hence A + B has a fixed point.

Theorem 2.3: Assume conditions $(H_1) - (H_3)$ of theorem 2.1. If B is condensing and K is normal then A + B has a fixed point. **Proof:** Define a mapping T as in Theorem 2.1. For fixed $u_0 \in [x_0, y_0]$ define a sequence $\{u_n\}$ by $u_{n+1} = Tu_n$. Let $S = \{u_0, u_1, u_2...\}$

 $\therefore \quad \mathbf{S} = \mathbf{T}(\mathbf{S}) \cup \{\mathbf{u}_0\}.$

Since $(I - A)^{-1}$ is continuous and B is condensing, T is also condensing.

Hence $\gamma(S) = \gamma(T(S)) < \gamma(S)$. Therefore $\gamma(S) = 0$. This implies that S is relatively compact. Hence there exists a subsequence {

 u_{n_k} of $\{u_n\}$ such that $u_{n_k} \to x^*$. But K is normal and so $u_n \to x^*$. Taking limits $n \to \infty$ in $u_n = Tu_{n-1}$, we get $x^* = Tx^*$ since T is

continuous. Hence x^* is a desired fixed point of A + B.

Theorem 2.4: Assume conditions $(H_1) - (H_4)$ of Theorem 2.1. If B is condensing and K is normal then A + B has minimal and maximal fixed points.

Proof: Define a mapping T as in the proof of Theorem 2.1. Then the sequences $\{x_n\}$ and $\{y_n\}$ defined by (3) converge respectively to x^* and y^* . It is obvious that $x^* \le y^*$ and x^* , y^* are fixed points of T. By similar procedure as expressed in Theorem 2.1, it can be proved that x^* and y^* are minimal and maximal fixed points of A+B.

Corollary 2.2: Let the condition of Theorem 2.4 be satisfied. Suppose A + B has only one fixed point $x \in [x_0, y_0]$. Then for any $u_0 \in [x_0, y_0]$ the sequence of iterates defined by (5) converges to x. i.e. $||u_n - x|| \rightarrow 0$ as $(n \rightarrow \infty)$.

The proof of this corollary is similar to that of corollary 2.1.

Remark-1: Consider the condition

(**H**₅): A is linear and A^k , for some $k \in N$, is nonlinear contraction on $[x_0, y_0]$.

If A_y is defined by (2) then for any $x \in [x_0, y_0]$ using linearity of A, it follows that

$$A_y^k$$
 (x) = A^k x + (I+A+A^2+...+A^{k-1}) By.

Thus for $x_1, x_2 \in [x_0, y_0]$,

$$\|A_{y}^{k}(\mathbf{x}_{1}) - A_{y}^{k}(\mathbf{x}_{2})\| \leq \phi (\|\mathbf{x}_{1} - \mathbf{x}_{2}\|)$$

which shows that A_y^k is a nonlinear contraction and hence A_y has a unique fixed point. This guarantees the existence of mapping T as defined in the proof of Theorem 2.1. The definition of A_y and T shows that T maps $[x_0, y_0]$ into itself. Thus Theorem 2.1 holds even if the condition (H_1) is replaced by (H_5) .

Remark 2: Theorem 2.1.1 of [2] appears as a special case of Theorem 2.1, which may be obtained by putting $A \equiv \theta$.

Remark 3: The condition (H_3) had been imposed in the Theorem 3 of [3]. This condition can be excluded to obtain the result of Theorem 3 of [3] as seen from Theorem 2.2. Our approach to prove the Theorem is quite simple and different from that of [3].

Remark 4: Corollary 2.1.1 of [2] is a special case of Corollaries 2.1 and 2.2.

Remark 5: Theorem 2.2 holds even if the condition (H1) is replaced by (H5).

3. APPLICATIONS

Let X = C[I, R] be the set of continuous real valued function defined on I = [0, 1] with supremum norm and $K = \{x \in X : x(t) \ge 0, 0 \le t \le 1\}$. Then X is a Banach space and K is a cone in X. Moreover K is normal and regular. Consider the two-point boundary value problem of ordinary differential equation

$$- x'' = \lambda f(t, x) + \mu g(t, x)$$
(6)
x (0)= 0 = x (1) (7)

where λ , μ are parameters and f, g: I x X \rightarrow X. The functions u and v, in C⁽²⁾ [I, R] are said to be respectively lower and upper solutions of (6) if

$$-\mathbf{u}''(\mathbf{t}) \geq \lambda \mathbf{f}(\mathbf{t}, \mathbf{u}(\mathbf{t})) + \boldsymbol{\mu} \mathbf{g}(\mathbf{t}, \mathbf{u}(\mathbf{t}))$$
(8)

and

-
$$\mathbf{v}''(t) \le \lambda f(t, \mathbf{u}(t)) + \mu g(t, \mathbf{u}(t))$$
. (9)

We need the following assumptions:

- $\begin{array}{ll} (A_1) & f(t,x) \text{ satisfies the Lipschitz condition in } x \text{ with Lipschitz } & \text{constant } L \text{ i.e. there is a constant } L > 0 \text{ such that } \\ & \mid f(t,x_1) f(t,x_2) \mid \, \leq \, L \mid x_1 \text{-} x_2 \mid. \end{array}$
- (A₂) g(t, x) is continuous on $0 \le t \le 1$.
- $\begin{array}{ll} (A_3) & f(t,x) \text{ and } g(t,x) \text{ are increasing with respect to } x \text{ i.e. for} \\ & 0 \leq t \leq 1, \, 0 \, \leq x_1 \, \leq \, x_2, \\ & f(t,\,x_1) \, \leq \, f(t,\,x_2) \end{array}$

and

 $g(t, x_1) \leq g(t, x_2) .$

It is obvious that $X_{\lambda,\mu}(t) \equiv 0$ is a trivial solution of problem (6) – (7) for any values of λ and μ .

Theorem 3.1: Assume $(A_1) - (A_3)$. Suppose that the function u and v are respectively the lower and upper solutions of equation (6). Further if $\lambda L < 8$, then the equations (6) – (7) have minimal and maximal solutions in [u, v]. **Proof:** It is well known that the solution of problem (6) – (7) is equivalent to the solution of integral equation

$$x(t) = \int_{0}^{1} G(t,s) [\lambda f(s, x(s)) + \mu g(s, x(s))] ds$$
(10)

where G(t, s) is the Green's function of differential operator -x''with respect to boundary conditions x(0) = 0 = x(1) given by

$$G(t, s) = \begin{cases} t(1-s) & \text{for } 0 \le t \le s \le 1 \\ s(1-t) & \text{for } 0 \le s \le t \le 1 \end{cases}$$
(11)

It is easy to show that

$$\int_{0}^{1} G(t,s) \, ds = \frac{t(1-t)}{2} \leq \frac{1}{8}.$$

Define

Ax (t) =
$$\lambda \int_{0}^{1} G(t,s) f(s,x(s)) ds$$

and Bx (t) = $\mu \int_{0}^{1} G(t,s) g(s,x(s)) ds$
For any x, y in [u, v];

ISSN: 2250-3021

IOSR Journal of Engineering May. 2012, Vol. 2(5) pp: 1196-1199

$$\|\operatorname{Ax} - \operatorname{Ay}\| = \sup_{t \in I} |\operatorname{Ax}(t) - \operatorname{Ay}(t)|,$$

$$\leq \sup_{t \in I} \lambda \int_{0}^{1} G(t, s) | f(s, x(s)) - f(s, y(s)) | ds$$

$$\leq \sup_{t \in I} \lambda L \int_{0}^{1} G(t, s) | x(s) - y(s)| ds$$

$$\leq \frac{\lambda L}{8} ||x - y||$$

Since $\lambda L < 8$, A becomes a contraction mapping on [u, v] and so (I - A)⁻¹ exist. Hypothesis (A₃) implies that (I - A)⁻¹B is increasing, (A₂) implies that B is completely continuous and hence B is condensing. Applying the theory of differential inequality to (8) and (9) we see that

$$\begin{split} u(t) &\leq \lambda \int_{0}^{1} G(t,s) f(s,u(s)) ds + \mu \int_{0}^{1} G(t,s) g(s,u(s)) ds \\ &\leq \lambda \int_{0}^{1} G(t,s) f(s,x(s)) ds + \mu \int_{0}^{1} G(t,s) g(s,y(s)) ds \\ &= Ax(t) + By(t) \\ &\leq \lambda \int_{0}^{1} G(t,s) f(s,v(s) ds + \mu \int_{0}^{1} G(t,s) g(s,v(s)) ds \\ &\leq v(t) \end{split}$$

where x, y are in [u, v]. Therefore A + B maps [u, v] into itself. Theorem 2.4 asserts that A + B has minimal and maximal fixed points in [u, v] which are desired solutions of equations (6) - (7).

REFERENCES

- 1. Lakshmikantham V. and Dajun Guo; Nonlinear Problems in Abstract Cones; Academic Press INC.1988
- 2. Smart, D. R; Fixed point theorems, Cambridge University Press (1974), (page 31).
- 3. V.C. Borkar and S T Patil,: Existence and Uniqueness of Solutions in order Banach Spaces, Journal of Pure and Applied Mathematica Sciences Vol. LXI, No 1-2(X)March 2005 P.53-59
- 4. V.C Borkar. and S.T Patil.: Class of mixed Monotone operators and its application to operator equations. Bull of Pure & Applied Sciences 22 E (1) (2003) 179-187.