Extremal Solutions of Boundary Value Problems Using Fixed Point Theorems

V. C. Borkar
Department of Mathematics, Yeshwant Mahavidyalaya,Nanded 431605, INDIA

Abstract

Existence of extremal fixed points of $\mathrm{A}+\mathrm{B}$ is obtained in ordered Banach spaces. Some applications to two- point boundary value problems in ordinary differential equations are discussed.

AMS (MOS) 2000 Subject classifications: 34 A 40, 34 B15.

1. INTRODUCTION

Krasnoselskii [2] proved the existence of fixed points of $A+B$ in closed convex Banach spaces while many mathematician had obtained its extremal fixed points in ordered Banach spaces. Here we generalize some results of [1.
Let X be a Banach space and K a cone in X . Let \leq be a partial ordering defined by K i.e. for x, y in $\mathrm{X}, x \leq \mathrm{y}$ if $\mathrm{y}-x \in \mathrm{~K}$. A cone K is said to be regular, if every increasing and bounded in order sequence has a limit and normal if there exists $\mathrm{N}>0$ such that $0 \leq x \leq \mathrm{y}$ implies $\|x\| \leq \mathrm{N}\|\mathrm{y}\|$. The details about cone and their properties may be found in [1].

Let $x_{0}, \mathrm{y}_{0} \in \mathrm{X}$ with $x_{0} \leq \mathrm{y}_{0}$, the set $\left[x_{0}, \mathrm{y}_{0}\right]=\left\{x \in \mathrm{X}: x_{0} \leq x \leq \mathrm{y}_{0}\right\}$ is called order interval in X .
A mapping T: $D \subset X \rightarrow X$ is said to be increasing if $X_{1} \leq X_{2}$ implies
$\mathrm{T} \mathrm{X}_{1} \leq \mathrm{T} \mathrm{X}_{2}$. T is said to be a nonlinear contraction if there exist a lower semi continuous real function ϕ with $\quad \phi(\mathrm{r})<\mathrm{r}, \quad \mathrm{r}>$ 0 satisfying
$\|\mathrm{T} x-\mathrm{Ty}\| \leq \phi(\|x-\mathrm{y}\|)$, for all x, y in D .
A mapping T is said to be condensing if $\gamma(\mathrm{T}(\mathrm{S}))<\gamma(\mathrm{S})$ where $\mathrm{S} \subset \mathrm{D}$ and γ is Kuratowskii's measure of noncompactness . It is evident that if T is completely continuous then it is condensing.

2. FIXED POINT THEOREMS.

Theorem 2.1: Let $\mathrm{x}_{0}, \mathrm{y}_{0} \in \mathrm{X}, \mathrm{x}_{0}<\mathrm{y}_{0}$ and $\mathrm{A}, \mathrm{B}:\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right] \rightarrow \mathrm{X}$ satisfy the following conditions:
$\left(\mathrm{H}_{1}\right)$ A is a nonlinear contraction,
$\left(\mathrm{H}_{2}\right) \quad \mathrm{Ax}+\mathrm{By} \in\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$ for $\mathrm{x}, \mathrm{y} \in\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$
$\left(\mathrm{H}_{3}\right) \quad(\mathrm{I}-\mathrm{A})^{-1} \mathrm{~B}$ is increasing where I denote an identity operator
$\left(\mathrm{H}_{4}\right) \quad B$ is semi continuous i.e. $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}$ strongly

$$
\Rightarrow \mathrm{Bx}_{\mathrm{n}} \rightarrow \mathrm{Bx} \text { weakly. }
$$

Suppose that the cone K in the Banach space X is regular. Then the mapping $A+B$ has maximal and minimal fixed points in $\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$.
Proof: Assume $T=(I-A)^{-1} B$, the existence of T is guaranteed by hypothesis $\left(H_{1}\right)$. Claim that T maps $\left[x_{0}, y_{0}\right]$ into itself. For fixed $y \in\left[x_{0}, y_{0}\right]$ define a mapping A_{y} on $\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$ by

$$
\begin{equation*}
A_{y}(x)=A x+B y \tag{2}
\end{equation*}
$$

where $\mathrm{x} \in\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$. Hypothesis $\left(\mathrm{H}_{2}\right)$ implies that A_{y} maps $\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$ into itself moreover for $\mathrm{x}_{1}, \mathrm{x}_{2} \in\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$

$$
\left\|\mathrm{A}_{\mathrm{y}}\left(\mathrm{x}_{1}\right)-\mathrm{A}_{\mathrm{y}}\left(\mathrm{x}_{2}\right)\right\| \leq \phi\left(\left\|\mathrm{x}_{1}-\mathrm{x}_{2}\right\|\right)
$$

and hence A_{y} is a nonlinear contraction. Therefore A_{y} has a unique fixed point $y^{\prime} \in\left[x_{0}, y_{0}\right]$ such that $A_{y}\left(y^{\prime}\right)=y^{\prime}$. Now for $\mathrm{x} \in\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$,
$\mathrm{Tx}=\mathrm{y} \quad \Rightarrow \mathrm{Ay}+\mathrm{Bx}=\mathrm{y} \quad \Rightarrow \mathrm{A}_{\mathrm{x}}(\mathrm{y})=\mathrm{y}$
But A_{x} has unique fixed point in $\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$ and hence $\mathrm{T} x \in\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$. Therefore T maps $\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$ into itself.
Now consider the sequences $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ defined by

$$
\begin{equation*}
\mathrm{x}_{\mathrm{n}+1}=\mathrm{T} \mathrm{x}_{\mathrm{n}} \text { and } \mathrm{y}_{\mathrm{n}+1}=\mathrm{T} \mathrm{y}_{\mathrm{n}} \tag{3}
\end{equation*}
$$

Hypothesis $\left(\mathrm{H}_{3}\right)$ implies that

$$
\begin{equation*}
\mathrm{x}_{0} \leq \mathrm{x}_{1} \leq \mathrm{x}_{2} \leq \ldots \ldots \leq \mathrm{x}_{\mathrm{n}} \leq \ldots \leq \mathrm{y}_{\mathrm{n}} \leq \ldots \ldots \leq \mathrm{y}_{1} \leq \mathrm{y}_{0} \tag{4}
\end{equation*}
$$

Since K is regular and sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded in order, these sequences converge to x^{*} and y^{*} respectively. Hypothesis $\left(\mathrm{H}_{4}\right)$ implies that T is semi continuous and so $T x^{*}=x^{*}$ and $T y^{*}=y^{*}$. The fixed points of T are also fixed points of A $+B$. Therefore x^{*} and y^{*} are fixed points of A+B.

If x is any fixed point of $\mathrm{A}+\mathrm{B}$ then $\mathrm{x}_{0} \leq \mathrm{x} \leq \mathrm{y}_{0}$. Since T is increasing, $\mathrm{x}_{1} \leq \mathrm{x} \leq \mathrm{y}_{1}$, and by induction $\mathrm{x}_{\mathrm{n}} \leq \mathrm{x} \leq \mathrm{y}_{\mathrm{n}}$ for $\mathrm{n}=$ $0,1,2,3 \ldots$ Taking the limits, we obtain $x^{*} \leq x \leq y^{*}$. Thus x^{*} and y^{*} are minimal and maximal fixed points of $A+B$. This completes the proof.
Corollary 2.1: Let the conditions of Theorem 2.1 be satisfied. Suppose $A+B$ has only one fixed point x in $\left[x_{0}, y_{0}\right]$. Then for any $\mathrm{u}_{0} \in\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$, the sequence

$$
\begin{equation*}
u_{n+1}=A u_{n+1}+B u_{n} \tag{5}
\end{equation*}
$$

converges to x. i.e. $\left\|u_{n}-x\right\| \rightarrow 0 \quad(n \rightarrow \infty)$.
Proof: Define a mapping T on $\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$ as in Theorem 2.1. Then the sequence (5) can be obtained as the successive iterates $u_{n+1}=T u_{n}$.
Since $\mathrm{x}_{0} \leq \mathrm{u}_{0} \leq \mathrm{y}_{0}$ and T is increasing, $\mathrm{x}_{\mathrm{n}} \leq \mathrm{u}_{\mathrm{n}} \leq \mathrm{y}_{\mathrm{n}}$. By hypothesis, x is the only fixed point of T and hence $\mathrm{x}^{*}=\mathrm{x}=\mathrm{y}^{*}$ where x^{*} and y^{*} are limits of sequences $\left\{T x_{n}\right\}$ and $\left\{T y_{n}\right\}$. Cone K is regular implies that K is normal. So by normality of cone and Theorem 2.1, it follows that $\quad u_{n} \rightarrow x$.

Theorem 2.2: Let the conditions $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ of Theorem 2.1 be satisfied. If B is completely continuous and K is normal then $A+B$ has a fixed point in $\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$.
Proof: Define a mapping T as in Theorem 2.1. Therefore T maps $\quad\left[x_{0}, y_{0}\right]$ into itself. Since $(I-A)^{-1}$ is continuous and B is completely continuous, T is also completely continuous. Moreover K is normal and hence order interval $\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$ is closed convex and bounded. Existence of fixed point of T is now guaranteed by Schauder's theorem. Hence A + B has a fixed point.

Theorem 2.3: Assume conditions $\left(H_{1}\right)-\left(H_{3}\right)$ of theorem 2.1. If B is condensing and K is normal then $A+B$ has a fixed point.
Proof: Define a mapping T as in Theorem 2.1. For fixed $u_{0} \in\left[x_{0}, y_{0}\right]$ define a sequence $\left\{u_{n}\right\}$ by $u_{n+1}=T u_{n}$. Let $S=\left\{u_{0}, u_{1}\right.$, $\left.\mathrm{u}_{2} \ldots\right\}$

$$
\therefore \quad \mathrm{S}=\mathrm{T}(\mathrm{~S}) \cup\left\{\mathrm{u}_{0}\right\} .
$$

Since $(\mathrm{I}-\mathrm{A})^{-1}$ is continuous and B is condensing, T is also condensing.
Hence $\gamma(\mathrm{S})=\gamma(\mathrm{T}(\mathrm{S}))<\gamma(\mathrm{S})$. Therefore $\gamma(\mathrm{S})=0$. This implies that S is relatively compact. Hence there exists a subsequence $\{$
$u_{n_{k}}$ \}of $\left\{u_{n}\right\}$ such that $u_{n_{k}} \rightarrow x^{*}$. But K is normal and so $u_{n} \rightarrow x^{*}$. Taking limits $n \rightarrow \infty$ in $u_{n}=T u_{n-1}$, we get $x^{*}=T x^{*}$ since T is continuous. Hence x^{*} is a desired fixed point of A + B.

Theorem 2.4: Assume conditions $\left(H_{1}\right)-\left(H_{4}\right)$ of Theorem 2.1. If B is condensing and K is normal then $A+B$ has minimal and maximal fixed points.
Proof: Define a mapping T as in the proof of Theorem 2.1. Then the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ defined by (3) converge respectively to x^{*} and y^{*}. It is obvious that $x^{*} \leq y^{*}$ and x^{*}, y^{*} are fixed points of T. By similar procedure as expressed in Theorem 2.1, it can be proved that x^{*} and y^{*} are minimal and maximal fixed points of $A+B$.

Corollary 2.2: Let the condition of Theorem 2.4 be satisfied. Suppose $A+B$ has only one fixed point $x \in\left[x_{0}, y_{0}\right]$. Then for any $u_{0} \in\left[x_{0}, y_{0}\right]$ the sequence of iterates defined by (5) converges to x. i.e. $\left\|u_{n}-x\right\| \rightarrow 0$ as ($n \rightarrow \infty$).

The proof of this corollary is similar to that of corollary 2.1.

Remark-1: Consider the condition

$\left(\mathbf{H}_{5}\right): \mathrm{A}$ is linear and A^{k}, for some $\mathrm{k} \in \mathrm{N}$, is nonlinear contraction on $\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$.
If A_{y} is defined by (2) then for any $x \in\left[x_{0}, y_{0}\right]$ using linearity of A, it follows that

$$
A_{y}^{k}(\mathrm{x})=A^{k} \mathrm{x}+\left(\mathrm{I}+\mathrm{A}+\mathrm{A}^{2}+\ldots+\mathrm{A}^{\mathrm{k}-1}\right) \mathrm{By}
$$

Thus for $\mathrm{x}_{1}, \mathrm{x}_{2} \in\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$,

$$
\left\|A_{y}^{k}\left(\mathrm{x}_{1}\right)-A_{y}^{k}\left(\mathrm{x}_{2}\right)\right\| \leq \phi\left(\left\|\mathrm{x}_{1}-\mathrm{x}_{2}\right\|\right)
$$

which shows that A_{y}^{k} is a nonlinear contraction and hence A_{y} has a unique fixed point. This guarantees the existence of mapping T as defined in the proof of Theorem 2.1. The definition of A_{y} and T shows that T maps $\left[\mathrm{x}_{0}, \mathrm{y}_{0}\right]$ into itself. Thus Theorem 2.1 holds even if the condition $\left(\mathrm{H}_{1}\right)$ is replaced by $\left(\mathrm{H}_{5}\right)$.

Remark 2: Theorem 2.1.1 of [2] appears as a special case of Theorem 2.1, which may be obtained by putting $\mathrm{A} \equiv \theta$.

May. 2012, Vol. 2(5) pp: 1196-1199

Remark 3: The condition $\left(\mathrm{H}_{3}\right)$ had been imposed in the Theorem 3 of [3]. This condition can be excluded to obtain the result of Theorem 3 of [3] as seen from Theorem 2.2. Our approach to prove the Theorem is quite simple and different from that of [3].
Remark 4: Corollary 2.1.1 of [2] is a special case of Corollaries 2.1 and 2.2.
Remark 5: Theorem 2.2 holds even if the condition (H1) is replaced by (H5).

3. APPLICATIONS

Let $X=C[I, R]$ be the set of continuous real valued function defined on $I=[0,1]$ with supremum norm and $K=\{x \in X: x(t)$ $\geq 0,0 \leq t \leq 1\}$. Then X is a Banach space and K is a cone in X . Moreover K is normal and regular. Consider the two-point boundary value problem of ordinary differential equation

$$
\begin{align*}
& -\mathrm{x}^{\prime \prime}=\lambda \mathrm{f}(\mathrm{t}, \mathrm{x})+\mu \mathrm{g}(\mathrm{t}, \mathrm{x}) \tag{6}\\
& \mathrm{x}(0)=0=\mathrm{x}(1)
\end{align*}
$$

where λ, μ are parameters and $\mathrm{f}, \mathrm{g}: \mathrm{Ix} \mathrm{X} \rightarrow \mathrm{X}$. The functions u and v, \quad in $\mathrm{C}^{(2)}[\mathrm{I}, \mathrm{R}]$ are said to be respectively lower and upper solutions of (6) if

$$
\begin{equation*}
-\mathrm{u}^{\prime \prime}(\mathrm{t}) \geq \lambda \mathrm{f}(\mathrm{t}, \mathrm{u}(\mathrm{t}))+\mu \mathrm{g}(\mathrm{t}, \mathrm{u}(\mathrm{t})) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
-\mathrm{v}^{\prime \prime}(\mathrm{t}) \leq \lambda \mathrm{f}(\mathrm{t}, \mathrm{u}(\mathrm{t}))+\mu \mathrm{g}(\mathrm{t}, \mathrm{u}(\mathrm{t})) \tag{9}
\end{equation*}
$$

We need the following assumptions:
$\left(A_{1}\right) f(t, x)$ satisfies the Lipschitz condition in x with Lipschitz constant L i.e. there is a constant $L>0$ such that

$$
\left|\mathrm{f}\left(\mathrm{t}, \mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{t}, \mathrm{x}_{2}\right)\right| \leq \mathrm{L}\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right| .
$$

(A_{2}) $\mathrm{g}(\mathrm{t}, \mathrm{x})$ is continuous on $0 \leq \mathrm{t} \leq 1$.
$\left(A_{3}\right) \quad f(t, x)$ and $g(t, x)$ are increasing with respect to x i.e. for $0 \leq \mathrm{t} \leq 1,0 \leq \mathrm{x}_{1} \leq \mathrm{x}_{2}$.

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{t}, \mathrm{x}_{1}\right) \leq \mathrm{f}\left(\mathrm{t}, \mathrm{x}_{2}\right) \\
& \mathrm{g}\left(\mathrm{t}, \mathrm{x}_{1}\right) \leq \mathrm{g}\left(\mathrm{t}, \mathrm{x}_{2}\right)
\end{aligned}
$$

It is obvious that $\mathrm{X}_{\lambda, \mu}(\mathrm{t}) \equiv 0$ is a trivial solution of problem (6)-(7) for any values of λ and μ.
Theorem 3.1: Assume $\left(A_{1}\right)-\left(A_{3}\right)$. Suppose that the function u and v are respectively the lower and upper solutions of equation (6). Further if $\lambda L<8$, then the equations (6) - (7) have minimal and maximal solutions in [u,v].
Proof: It is well known that the solution of problem (6) - (7) is equivalent to the solution of integral equation

$$
\begin{equation*}
\mathrm{x}(\mathrm{t})=\int_{0}^{1} \mathrm{G}(\mathrm{t}, \mathrm{~s})[\lambda \mathrm{f}(\mathrm{~s}, \mathrm{x}(\mathrm{~s}))+\mu \mathrm{g}(\mathrm{~s}, \mathrm{x}(\mathrm{~s}))] \mathrm{ds} \tag{10}
\end{equation*}
$$

where $G(t, s)$ is the Green's function of differential operator - $x^{\prime \prime}$ with respect to boundary conditions $x(0)=0=x(1)$ given by

$$
\mathrm{G}(\mathrm{t}, \mathrm{~s})= \begin{cases}\mathrm{t}(1-\mathrm{s}) & \text { for } 0 \leq \mathrm{t} \leq \mathrm{s} \leq 1 \tag{11}\\ \mathrm{~s}(1-\mathrm{t}) & \text { for } 0 \leq \mathrm{s} \leq \mathrm{t} \leq 1\end{cases}
$$

It is easy to show that

$$
\int_{0}^{1} G(t, s) d s=\frac{t(1-t)}{2} \leq \frac{1}{8}
$$

Define

$$
\mathrm{Ax}(\mathrm{t})=\lambda \int_{0}^{1} G(t, s) f(s, x(s)) d s
$$

and

$$
\mathrm{Bx}(\mathrm{t})=\mu \int_{0}^{1} G(t, s) g(s, x(s)) d s
$$

For any x, y in $[\mathrm{u}, \mathrm{v}]$;

$$
\begin{aligned}
\|\mathrm{Ax}-\mathrm{Ay}\| & =\sup _{\mathrm{t} \in \mathrm{I}}|\mathrm{Ax}(\mathrm{t})-\mathrm{Ay}(\mathrm{t})|, \\
& \leq \sup _{\mathrm{t} \in \mathrm{I}} \lambda \int_{0}^{1} G(t, s)|f(\mathrm{~s}, \mathrm{x}(\mathrm{~s}))-\mathrm{f}(\mathrm{~s}, \mathrm{y}(\mathrm{~s}))| \mathrm{ds} \\
& \leq \sup _{\mathrm{t} \in \mathrm{I}} \lambda \mathrm{~L} \int_{o}^{1} G(t, s)|\mathrm{x}(\mathrm{~s})-\mathrm{y}(\mathrm{~s})| \mathrm{ds} \\
& \leq \frac{\lambda L}{8}\|\mathrm{x}-\mathrm{y}\|
\end{aligned}
$$

Since $\lambda L<8$, A becomes a contraction mapping on $[\mathrm{u}, \mathrm{v}]$ and so $(\mathrm{I}-\mathrm{A})^{-1}$ exist. Hypothesis $\left(\mathrm{A}_{3}\right)$ implies that $(\mathrm{I}-\mathrm{A})^{-}$ ${ }^{1} B$ is increasing, (A_{2}) implies that B is completely continuous and hence B is condensing. Applying the theory of differential inequality to (8) and (9) we see that

$$
\begin{aligned}
\mathrm{u}(\mathrm{t}) & \leq \lambda \int_{0}^{1} \mathrm{G}(\mathrm{t}, \mathrm{~s}) \mathrm{f}(\mathrm{~s}, \mathrm{u}(\mathrm{~s})) \mathrm{ds}+\mu \int_{0}^{1} \mathrm{G}(\mathrm{t}, \mathrm{~s}) \mathrm{g}(\mathrm{~s}, \mathrm{u}(\mathrm{~s})) \mathrm{ds} \\
& \leq \lambda \int_{0}^{1} \mathrm{G}(\mathrm{t}, \mathrm{~s}) \mathrm{f}(\mathrm{~s}, \mathrm{x}(\mathrm{~s})) \mathrm{ds}+\mu \int_{0}^{1} \mathrm{G}(\mathrm{t}, \mathrm{~s}) \mathrm{g}(\mathrm{~s}, \mathrm{y}(\mathrm{~s})) \mathrm{ds} \\
& =\mathrm{Ax}(\mathrm{t})+\mathrm{By}(\mathrm{t}) \\
& \leq \lambda \int_{0}^{1} \mathrm{G}(\mathrm{t}, \mathrm{~s}) \mathrm{f}\left(\mathrm{~s}, \mathrm{v}(\mathrm{~s}) \mathrm{ds}+\mu \int_{0}^{1} \mathrm{G}(\mathrm{t}, \mathrm{~s}) \mathrm{g}(\mathrm{~s}, \mathrm{v}(\mathrm{~s})) \mathrm{ds}\right. \\
& \leq \mathrm{v}(\mathrm{t})
\end{aligned}
$$

where x, y are in $[\mathrm{u}, \mathrm{v}]$. Therefore A + B maps $[\mathrm{u}, \mathrm{v}]$ into itself. Theorem 2.4 asserts that A +B has minimal and maximal fixed points in $[\mathrm{u}, \mathrm{v}]$ which are desired solutions of equations (6) - (7).

REFERENCES

1. Lakshmikantham V. and Dajun Guo; Nonlinear Problems in Abstract Cones; Academic Press INC. 1988
2. Smart, D. R; Fixed point theorems, Cambridge University Press (1974), (page 31).
3. V.C. Borkar and S T Patil,: Existence and Uniqueness of Solutions in order Banach Spaces, Journal of Pure and Applied Mathematica Sciences Vol. LXI, No 1-2(X)March 2005 P.53-59
4. V.C Borkar. and S.T Patil.: Class of mixed Monotone operators and its application to operator equations. Bull of Pure \& Applied Sciences 22 E (1) (2003) 179-187.
