
IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 726-730

ISSN: 2250-3021 www.iosrjen.org 726 | P a g e

An Evolutionary Neural Network Architecture Optimization Algorithm

for Hand Written Digits Recognition

S. M.Krishna Ganesh
1,

,P. Saranya
2

1Department of CSE, SJUIT, Tanzania
2Department of CSE, Kalasalingam University, India

ABSTRACT
Artificial Neural Network model is inspired by the functioning of the human brain. It is configured for a specific

application, such as pattern recognition or data classification, through a learning process. In this paper we present a

novel neural network architecture optimization algorithm from the given training pattern sets to solve a specific

problem based on the principles of neuro-biology. Generally the neural network used for most of the applications are

fully interconnected and bound to contain superfluous links and units. These superfluous links and units will

contribute additional computational burden and also degrade its performance.. Our algorithm effectively removes

all non-contributory links by directly using the characteristics of the given set of training pattern and determines the

number of hidden layer neurons that can provide the better performance. We have demonstrated the working of our

algorithm. The simulation results shows that our algorithm out performs other existing pruning algorithm for hand

written digits recognition problems The various performance related graphs shows that our algorithm is

computationally and performance wise out performs when compared than other existing pruning algorithms. The

best feature of our algorithm is that it incorporated both pruning and growth strategies..

Keywords – Architecture Optimization, Contributory links, Handwritten digit recognition and Neural network.

I. INTRODUCTION
 In most of the applications, neural network has been

successfully applied to solve many different problems,
including dynamic system identification, pattern

classification, and adaptive control. As we know, before a

neural network can be employed, its dimensions like number

of layers, number of neurons in each layer and how they are

connected must be predetermined. However, choosing the

appropriate size of a neural network is a very difficult task

and often comes down to guess work. In general, small-

sized networks, even though they show good generalization

performance, tend to fail to learn the training data within a

given error bound, whereas large-sized networks learn easily

the training data but yield poor generalization, unnecessary

arithmetic calculations and high computation cost. For real
time applications, the reduction of network size may save as

precious hardware implementation time. In solving the

problem of defining an optimal network topology, two main

suggestions emerge. First, it is possible to decide on a

relatively large network and then prune superfluous or

redundant connections. This process is called as “neural

network pruning”. By using pruning techniques to determine

the ideal size of a network can result in network topologies

that never reach acceptable levels of accuracy on some

classification problems.The second possibility is to start

with a very small network and add nodes to grow it as
necessary to learn a problem. This type of network grows as

it learns by installing fully connected nodes into the network

topology. This is called as “neural network growing”. One

drawback of this solution is the creation of a large

interconnected system that is very deep in layers. In a fully

interconnected neural network, the neurons of a particular

layer are connected to the corresponding neurons and their

neighbors in the other layers. Mostly, the present day neural

network for solving a given problem does not provide an

efficient performance due to superfluous interconnecting

links. So there is a need arise to prune these unwanted

superfluous links and consequently all the non-participating

hidden layer neurons.Most of the existing pruning

algorithms using the characteristics of the training pattern in
indirect and complex way to prune the neural network are

not definitely perfect because of that these algorithms prune

some links (Contributory links) that are useful to improve

the generalization ability and leaves some links (Non

contributory links) that are not useful by randomly

redistributing the link weights. It is evident from the above

facts that these algorithms may degrade the generalization

ability of the neural network and do not provide a perfectly

fitting architecture for the given training pattern set and

provide optimal performance. The above finding gave us a

clue to develop a new systematic approach to prune only the
non-contributory links and neurons, by directly using the

characteristics of the given set of training pattern. Our novel

algorithm will give rise to fully optimized neural network

architecture for a given training pattern set with enhanced

performance ability

II. MOTIVATION
The total number of neurons in the human brain is

about 100 billion and each has connected to nearly 10,000

other cells. This means that each neuron may sends and
receives impulse from as many as 10,000 target cells. The

conclusions drawn from biological model are Biological

neural networks are not fully inter-connected, The average

number of interconnections per unit is only 10,000, When

one cell repeatedly assists in firing another, the axon of the

first cell develops synaptic knobs (or enlarge them if they

already exists) in contact with the some of the second cell,
Our brain takes raw sensory data from sensory organs and

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 726-730

ISSN: 2250-3021 www.iosrjen.org 727 | P a g e

transfers it into percepts, which correspond, to mental
conceptual categories. Any data that does not conform to

this requirement of perceptual organization cannot be

processed. Even when data is organized into perception the

judgment made by the brain is sometime internally

contradictory. The above biological details motivated us to

design this novel method to optimize neural network

architecture using the given set of training patterns. This

approach is called as evolutionary neural network

architecture optimization algorithm.

III. RELATED WORK
 A rule of thumb for obtaining good generalization

in systems is that one should use the smallest system that

will fit the data. A typical neural network contains an input

layer, an output layer, and one or more hidden layers. The

number of outputs and inputs are usually fixed; while the

number of hidden layers and number of hidden neurons in

each hidden layer can be varied. In this paper, we focus on

the studies of pruning algorithms for multi-layer

feedforward neural networks. The simplest way to find the

optimum network size is to use a brute force approach that

produces all the combinations of networks within a desirable
range, trains them, and then chooses the best one. This

process is usually not an efficient way to solve the problem.

There are two another ways to perform the neural network

optimization which is growth algorithm and pruning

algorithm. Pruning algorithm will be again classified into

two categories: Sensitivity algorithm force to estimate the

units or links are least important and deletes them during

training i.e., the network is trained, sensitivities are

estimated, and then weights or nodes are removed Penalty

term algorithm will modify the cost function so that back

propagation based on the function drives unnecessary
weights to zero and, in effect, removes them during training.

Even if the weights are not actually removed, the network

acts like a smaller system. Chung F. L. and Lee T. offered

Network-growth approach to design of feedforward neural

networks. A network-growth approach is pursued to address

the problems concurrently and a progressive-training (PT)

algorithm is proposed. The algorithm starts training with a

one-hidden-node network and a one-pattern training subset.

The training subset is then expanded by including one more

pattern and the previously trained network, with or without a

new hidden node grown, is trained again to cater for the new

pattern. Such a process continues until all the available
training patterns have been taken into account. At each

training stage, convergence is guaranteed and at most one

hidden node is added to the previously trained network.By

using magnitude based pruning algorithm, John Sum dealt

with Comparative study on various pruning algorithms for

RNN I: Complexity Analysis and told that several non-

heuristic pruning algorithms for fully connected RNN will

be investigated, some of them are extended from heuristic

based approaches and some of them are based on weight

magnitude, together with some tricks on the pruning

procedures. Because of high computation cost and
computational complexity by using heuristic approach,

propose the idea of non-heuristic algorithms is the inclusion

of skipping and re-pruning. By using weight magnitude,

whole list of weight have been checked, the pruning process

re-run again and again until no more weight can be
removed. As pruning a recurrent neural network is already a

difficult problem, skipping and re-pruning does not

introduce much overhead. Optimal Brain Damage algorithm

assumes that the Hessian matrix (H) is diagonal. That is

equivalent to assume that the total change in E when several

weights (W) are deleted is the sum of δE caused by deleting

each of the weights individually. Basically, the saliency is

 approximated by the second derivative of the cost function

with respect to the weight. By using this algorithm, Manabu

Kotani, Akihiro Kajiki and Kenzo Akazawa have proposed

A structural learning algorithm for multi-layered neural

networks for organizing the structure of the multi-layered
neural networks. The proposed pruning algorithms consists

of two already known algorithms such as the structural

learning algorithm with forgetting and the optimal brain

damage algorithm using the second derivatives of the

assessment for pruning. It can able to find the set of weights

whose pruning will cause the least increase of the object

function which includes only the error term. After the

network is slimmed by the structural learning algorithm with

forgetting, unimportant weights are pruned from the

network using the second derivatives. Babak Hassibi and

David G. Stork provide general network pruning to present
the OBS algorithm. Unlike OBD, OBS does not only delete

a single weight, say, wj, but it will also adjust the remaining

weights optimally to give the least increase in the error

function by the following formula It is significantly better

since it prunes more weights and yields good generalization

of data than magnitude-based methods and Optimal Brain

Damage which often remove the wrong weights. There is no

restrictive assumption about the form of the network‟s

Hessian as in OBD algorithm. It does not demand retraining

after the pruning of a weight. Crucial to OBS is a recursion

relation for calculating the inverse Hessian matrix from
training data and structural information of the net.

IV. NOVEL ANN ARCHITECTURE

 In fully connected neural networks only a group of links

will contribute to learning process we name them as

contributory links and the rest of the links as non-

contributory links. We again classify the non-contributory

links in two categories. The first category of links does not

take part in the learning process; the second category of

links takes part in the learning process and does not

contribute anything significantly during the learning
process. Moreover the convergence of the neural network

during the learning process requires some minimum number

of processing neurons in the hidden layer. So we divided the

process of constructing the optimal architecture (i.e. the

minimum number of interconnection links and the hidden

layer neurons which are required to learn the given input

pattern without any mistake) in three stages. The first stage

is identifying the contributory links. We have used the given

set of training pattern to identify these links. The second

stage is determining the minimal number of hidden layer

neurons. This iterative and time consuming procedure but
can be stopped once the network is converged and before

resulting in fully optimized neural network if it is desired so.
The minimal number of hidden layer unit found in the above

step is then adjusted to get optimal performance architecture

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 726-730

ISSN: 2250-3021 www.iosrjen.org 728 | P a g e

with respect to defined performance criteria. Our
computation technique combines characteristics both the

pruning and growth models and use the performance

criteria. The steps involved to optimize the neural network

architecture are given below.

Step 1: Trees are generated from units of first training set

pattern in the output layer neurons as roots. Then

the root of each tree is connected to all the hidden

layer neurons as immediate children. Each child in

turn connected to the activated input neurons.

Step 2: The trees generated in step1 are superimposed to

create the links between the neurons.

Step 3: The above two steps repeated for all training
patterns in the training set.

Step 4: Remove all the neurons that are not connected with

any links.

Step 5: Generate various performance-related graphs to

determine the optimal hidden layer units.

Finally the network is generated using above set gives rise

to minimal number of interconnection links for the given

training pattern and gives optimal performance. Matrices are

used to store the links between neurons generated by this

method.

To demonstrate pruning of superfluous links we will take a
simple example of table 1.

 Training pattern 1 Training pattern 2

Input 100 101

Target 111 101

The above table provides the size of both the input and

output pattern. (If size of input layer unit and Output layer

unit are selected arbitrarily then algorithm will determine

hidden layer neurons) These details are used to determine

the number of input layer neurons that is 3 and output layer

neurons is 3 and to calculate the initial number of hidden

layer neurons that is 2. The network building stages are

shown from figure-1 to Figure-7.

 Starting network without any link

 Figure : Network Building Stages

 Figure : Network Building Stages

Tree Generated from a second activated unit off pattern 1

Figure : Network Building Stages

Super imposition of trees generated from pattern 1

Figure : Network Building Stages

Super imposition of trees generated from pattern 2

Figure : Network Building Stages

Optimized neural network architecture

V. PROPOSED NEW PRUNING ALGORITHM

Given:

The size of input pattern of „M‟ bits

The size of output pattern is „N‟ bits

The total number of training patterns is „P‟

Evolutionary Neural network architecture Optimization

Algorithm

H(M+N)/2

Done_SIFalse

Done_SDFalse

For I1 to P

do For J1 to N

do If(O_PAT_VAL[I,J]=1)

then For K1 to H
do If(there is not link (output_unit[J], hidden_unit[K]))

then create link link (output_unit[J], hidden_unit[K])

For L1 to M

Do If (I_PAT_VAL[I,L]=1)

Then If(there is not link (input_unit[L], hidden_unit[K]))

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 726-730

ISSN: 2250-3021 www.iosrjen.org 729 | P a g e

Then create link (input_unit[L], hidden_unit[K])
if(Neural Network is converged)

then Done_SITrue

If Done_SD=False

Then HH-1 and Goto Step 4

Else HH+1 and Stop

Else Done_SDTrue

Then If(Done_SI=False)

Then HH+1 and Goto step 4

Else

HH-1 and stop

VI. IMPLEMENTATION AND RESULTS
We have chosen handwritten digits recognition

problem for our experiments. The special significance of

selecting this problem is its usefulness in automated postal

mail sorting by reliably recognizing the Zip (pin) Code. We

have downloaded the data from website

http://www.cs.toronto.edu/~roweis/data.html.These data sets

are in image format and needs preprocessing in order to

convert into acceptable neural network input format.. In the

preprocessing, first, these digits images are converted into
standard size (16X16) and then converted into binary

images. Finally the pixel values of the images are used as

input to the network. The output is a vector of 10 bits where

each bits represent one of the ten digits. After preprocessing

we have carefully selected for creating training data set and

testing data set. Our training data set was created such a way

that it include every variation in the hand written digit image

for all ten different digits. The test data set again carefully

selected in such way that it include slight variation from

training data image. This is very useful in testing the

generalization ability of the neural network. We have use

Stuggart Neural Network Simulator(SNNS) for conducting
our experiments. This is very flexible simulator for

conducting experiments for many research problems. A

small C program was written to identify the non-

contributing links. The neural network was constructed by

bignet option of SNNS simulator with 256 input units, 10

output layer units and 133 initial hidden layer units. The

interconnection links are made only for contributing

connection. The optimal number of hidden layer units are

determined by using our algorithm. A graph was drawn for

number of hidden layer units versus network convergence

time. From the Figure1 which shows the graph drawn
between number of hidden layer units and converges time

we can conclude that the network converges fast at 80

hidden layer units. So eights hidden layer units is the

optimal number hidden layer unit for this specific problem

and selected data set. So we have kept eighty units in the

hidden layer.

 Figure: Convergence Time versus Number of hidden layer units

In order to check the convergence performance of our

approach with respect to other approaches we have

conducted experiment with similar our own bench mark
training data set. A bar chart graph was drawn from the

convergence taken by different approaches. It is seen very

clearly from the chart (Figure2) that our approach has taken

least convergence time.

 Figure: Methods Versus Convergence time (Training Cycles)

The final experiment was conducted to validate the

performance of our algorithm compared to other algorithm

with respect generalization ability of the neural network We

have found that our algorithm out performs when compared

to other approaches for our testing data set. The figure 3

shows the result of our experiment for determining the

accuracy of predicting input data from the carefully selected

testing data set.

Figure: Comparison of generalization ability

VII. CONCLUSION
 The superior performance of our proposed

approach is due to careful removal non-contributing links

and employing sufficient number of hidden layer unit. That

is our architecture is neither over fit the input data nor under

fit input data. Our approach inspired by neuro-biology

principles provide almost right fitting of input training data

set. This approach can extended for multiple hidden layer

neural networks with more in depth study of various existing

architecture, neuro-anatomy and neuro-physiology.

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 726-730

ISSN: 2250-3021 www.iosrjen.org 730 | P a g e

ACKNOWLEDGEMENTS
First of all we thank the almighty for giving us the

knowledge and courage to complete the research work

successfully. We express our gratitude to our respected

Kalvivallal,T.Kalasalingam Founder, and

Chancellor,Kalasalingam University, Krishnankoil,

Srivilliputur,India and Dr. S.Radhakrishnan, Vice

Chancellor,Kalasalingam University for allowing us to do

the research work internally. We thank our friends and

collegues for their support and encouragement.

REFERENCES
 [1] S.Karthikeyan and Praveen Kumar Singh,

“Performance based optimization of neural network

architecture using training pattern sets,” International

Conference on Cognitive Science 2004, pp. 55–60.

[2] Devin Sabo and Xiao-Hua, “A new pruning

algorithm for neural network dimension analysis,”

IEEE 2008, pp. 3313–3318.

[3] Nader Fnaiech, Sabeur Abid, Farhat Fnaiech and
Mohamed Cheriet, “A modified version of a formal

pruning algorithm based on local relative variance

analysis,” IEEE 2004, pp. 849-852.

[4] Manabu Kotani, Akihiro Kajiki and Kenzo Akazawa,

“A structural learning algorithm for multi-layered

neural networks,” IEEE 1997, pp. 1105-1110.

[5] Eric Fock, Philippe Lauret and Thierry Mara, “A

new saliency measure for inputs selection and node

pruning in neural network,” IEEE 2005, pp. 960-965.

[6] John Sum, “Comparative study on various pruning

algorithms for RNN I: complexity analysis,” in Proc
. First international conference on machine learning

and cybernetics, 2002, pp.2225-2230.

[7] Engelbrecht, A.P., “A new pruning heuristic based

on variance analysis of sensitivity information”,

IEEE Transactions on Neural Networks 2001,

Volume 12, Issue6, pp.1389-1399.

[8] Mozer, M.C. and Smolensky, P., “Skeletonization: A

technique for trimming the fat from a network via

relevance assessment,” in Advance in Neural

Information Processing 1989, D.S. Touretzky, Ed.,

pp.107-115.

[9] Ponnapalli, P.V.S., Ho, K.C., and Thomson, M., “A
formal selection and pruning algorithm for

feedforward artificial neural network optimization”,

IEEE Transactions on Neural Networks 1999,

Volume10,Isssue 4, pp.964-968.

[10] Karnin, E.D., “A simple procedure for pruning back-

propagation trained neural networks”, IEEE

Transactions on Neural Networks 1990, Volume

1,Issue 2, pp.239-242.

[12] Russell Reed, “Pruning Algorithms-A Survey”, IEEE

Transactions on Neural Networks, Volume 4, No.5,

Sep 1993, pp. 740-747.

[13] Babak Hassibi, David G. Stork and Gregory J .
IVolff, “0ptirna.l Brain Surgeon and General

Xetlwork Pruning” ,IEEE 2008, pp.293-299.

[14] J.P. Thivierge, F. Rivest and T. R. Shultz, “A Dual-

Phase Technique for Pruning Constructive

Networks,” IEEE 2003, pp. 559-564.

[15] Hubert Harrer and Josef A. Nossek,

“Skeletonization: A New Application for Discrete-

Time Cellular Neural Networks Using Time-Variant

Templates,” IEEE 1992, pp.2897-2900.

[16] Marsland, S., Nehmzow, S.U., and Shapiro, J., “A

self-organizing network that grows when required”,

in Neural Networks, Volume 15, 2002, Issue 8-9,
pp.1041-1058.

[17] Efe, M.O., Iplikci, S., Kayank, O., and Wilamowski,

B., “An Algorithm for Fast Convergence in Training

Neural Networks”, International Joint Conference on

Neural Networks, pp.1778-1782, Washington DC,

July 15-19, 2001.

