ISSN: 2250-3021

Vol. 1, Issue 2, pp. 111-117

# Some Stronger Forms of g<sup>µ</sup> b –continuous Functions

M.TRINITA PRICILLA \* and I.AROCKIARANI \* \*

\*Department of Mathematics, Jansons Institute of Technology Karumathampatti, India \*\*Department of Mathematics, Nirmala College for Women, Coimbatore – 641 046.

#### **Abstract:**

The purpose of this paper is to introduce new classes of functions called strongly  $g^{\mu}$  b –closed map, strongly  $g^{\mu}b$  –continuous, perfectly  $g^{\mu}b$ -continuous and strongly  $g^{\mu}b$  –irresolute functions in supra topological spaces. Some properties and several characterizations of these types of functions are obtained. Also we investigate the relationship between these classes of functions.

#### 1. Introduction

In 1970, Levine [7] introduced the concept of generalized closed sets in topological spaces and a class of topological spaces called  $T_{1/2}$  spaces. Extensive research on generalizing closedness was done in recent years by many Mathematicians [4,5,7,8,9]. And rijevic [2] introduced a new class of generalized open sets in a topological space, the so-called b-open sets. In 1983, A.S.Mashhour et al [9] introduced the notion of supra topological spaces and studied S-S continuous functions and  $S^*$  - continuous functions. In 2010, O.R.Sayed and Takashi Noiri [12] introduced supra b - open sets and supra b - continuity on topological spaces. In 2011, I.Arockiarani and M.Trinita Pricilla[3] introduced a new class of generalized b-open sets in supra topological spaces.

In this paper we introduce and investigate notions of new classes of functions namely strongly  $g^{\mu}$  –closed, strongly  $g^{\mu}b$ -closed, strongly  $g^{\mu}$ -continuous, strongly  $g^{\mu}b$ -continuous strongly  $g^{\mu}$  -irresolute, strongly  $g^{\mu}b$  irresolute, almost  $g^{\mu}$  –irresolute and almost  $g^{\mu}$  b –irresolute functions in supra topological spaces. Relations between these types of functions and other classes of functions are obtained. We also note that the class of  $g^{\mu}b$ -closed map is properly placed between strongly  $g^{\mu}b$ -closed map and almost  $g^{\mu}b$ -closed map.

### 2. Preliminaries

#### Definition: 2.1 [9]

A subclass  $\tau^* \subset P(X)$  is called a supra topology on X if  $X \in \tau^*$  and  $\tau^*$  is closed under arbitrary union.(X,  $\tau^*$ ) is called a supra topological space (or supra space). The members of  $\tau^*$  are called supra open sets. Definition: 2.2 [9]

The supra closure of a set A is defined as  $Cl^{\mu}(A) = \cap \{B: B \text{ is supra closed and } A \subseteq B\}$ 

The supra interior of a set A is defined as Int  ${}^{\mu}(A) = \bigcup \{B: B \text{ is supra open and } A \supseteq B\}$ Definition 2.3 [12]

Let  $(X,\mu)$  be a supra topological space. A set A is called a supra b - open set if

A  $\subseteq$  Cl<sup> $\mu$ </sup> (Int <sup> $\mu$ </sup>(A) )  $\cup$  Int <sup> $\mu$ </sup>(Cl <sup> $\mu$ </sup>(A)). The complement of a supra b - open set is called a supra b - closed set. Definition: 2.4 [3]

Let  $(X,\mu)$  be a supra topological space. A set A of X is called supra generalized - closed set (simply  $g^{\mu}$  closed) if  $cl^{\mu}(A) \subseteq U$  whenever  $A \subseteq U$  and U is supra open. The complement of supra generalized - closed set is supra generalized - open set.

Definition: 2.5 [3]

Let  $(X,\mu)$  be a supra topological space. A set A of X is called supra generalized b - closed set (simply  $g^{\mu}$  b closed) if  $bcl^{\mu}(A) \subseteq U$  whenever  $A \subseteq U$  and U is supra open. The complement of supra generalized b - closed set is supra generalized b - open set.

Definition: 2.6 [14]

A function  $f:(X,\tau) \to (Y,\sigma)$  is said to be  $g^{\mu} b$  –continuous if  $f^{-1}(V)$  is  $g^{\mu} b$  - closed in  $(X,\tau)$  for every supra closed set V of  $(Y, \sigma)$ .

Definition: 2.7 [14]

A function  $f:(X,\tau) \to (Y,\sigma)$  is said to be  $g^{\mu}b$  –irresolute if  $f^{-1}(V)$  is  $g^{\mu}b$  - closed in  $(X,\tau)$  for every  $g^{\mu}$ b - closed set V of  $(Y, \sigma)$ .

Vol. 1, Issue 2, pp. 111-117

Definition :2.8 [ 16]

A supra topological space  $(X,\mu)$  is said to be supra T <sub>gb</sub>-space if every  $g^{\mu}b$ -closed set is  $b^{\mu}$  - closed.

Definition : 2.9 [16]

A supra topological space  $(X,\mu)$  is said to be supra T<sub>g</sub> -space if every g<sup> $\mu$ </sup>b-closed set is g<sup> $\mu$ </sup> - closed.

Definition: 2.10 [13]

A function  $f: (X, \tau) \to (Y, \sigma)$  is called *Perfectly<sup>µ</sup> continuous* if  $f^{-1}(V)$  is  $cl^{\mu}open^{\mu}$  in X for each supra open set V of Y.

Definition: 2.11 [15]

A Subset A of  $(X, \mu)$  is said to be supra regular open if  $A = Int^{\mu}(Cl^{\mu}(A))$  and supra regular closed if  $A = cl^{\mu}(Int^{\mu}(A))$ .

#### Definition : 2.12[14]

A map  $f:(X,\tau) \to (Y,\sigma)$  is said to be  $g^{\mu}b$  -closed map if for every supra closed F of X, f(F) is  $g^{\mu}b$  -closed in Y.

# **3.** Strongly $g^{\mu}$ b-closed map

#### Definition: 3.1

A map  $f: (X, \tau) \to (Y, \sigma)$  is said to be strongly  $g^{\mu}$ -closed map if for every  $g^{\mu}$ -closed F of X, f(F) is  $g^{\mu}$ -closed in Y.

# Definition: 3.2

A map  $f: (X, \tau) \to (Y, \sigma)$  is said to be strongly  $g^{\mu}$  b-closed map if for every  $g^{\mu}$  b-closed F of X, f(F) is  $g^{\mu}$  b-closed in Y.

#### Theorem: 3.3

(i) If  $f:(X,\tau) \to (Y,\sigma)$  is  $g^{\mu}$  b-closed map and  $g:(Y,\sigma) \to (Z,\gamma)$  is strongly  $g^{\mu}$  b-closed map then  $g \circ f:(X,\tau) \to (Z,\gamma)$  is  $g^{\mu}$  b-closed map.

(ii) If  $f:(X,\tau) \to (Y,\sigma)$  is supra-closed map and  $g:(Y,\sigma) \to (Z,\gamma)$  is strongly  $g^{\mu}$  b-closed map then  $g \circ f:(X,\tau) \to (Z,\gamma)$  is  $g^{\mu}$  b-closed map. Proof: It is obvious.

Remark: 3.4

If  $f:(X,\tau) \to (Y,\sigma)$  is strongly  $g^{\mu}$  b-closed map and  $g:(Y,\sigma) \to (Z,\gamma)$  is supra closed map then the composite map  $g \circ f$  may not be strongly  $g^{\mu}$  b-closed map and it is shown by the following example. Example: 3.5

Let X={a,b,c},  $\tau = \{\phi, X, \{a\}\} = \sigma$   $\eta = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{b,c\}\}$ . Let  $f: (X, \tau) \to (X, \sigma)$ and  $g: (X, \sigma) \to (X, \eta)$  be an identity map. Then f is strongly  $g^{\mu}$  b-closed map and g is supra closed map but  $(g \circ f)\{b\}=\{b\}$  is not  $g^{\mu}$  b-closed in  $(X, \eta)$ . Therefore  $g \circ f$  is not strongly  $g^{\mu}$  b-closed map. Definition: 3.6

A map  $f: (X, \tau) \to (Y, \sigma)$  is said to be almost  $g^{\mu}$  b-closed map if for every *regular*<sup> $\mu$ </sup> closed F of X, f(F) is  $g^{\mu}$  b-closed in Y.

Theorem: 3.7

- (i) Every strongly  $g^{\mu}$  b-closed map is almost  $g^{\mu}$  b-closed map.
- (ii) Every strongly  $g^{\mu}$  b-closed map is  $g^{\mu}$  b-closed map.

#### M.TRINITA PRICILLA, I.AROCKIARANI / IOSR Journal of Engineering (IOSRJEN) ISSN: 2250-3021 www.iosrjen.org

#### Vol. 1, Issue 2, pp. 111-117

Every  $g^{\mu}$  b-closed map is almost  $g^{\mu}$  b-closed map. (iii)

Proof: It is obvious.

Remark: 3.8

The converse of the above theorem is not true and it is shown by the following examples. Example: 3.9

Let X={a,b,c,d},  $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$ . Let  $f: (X,\tau) \rightarrow (X,\tau)$  be defined by f(a) =c; f(b) = a; f(c) = d; f(d) = b. Here f is almost  $g^{\mu}$  b-closed but not strongly  $g^{\mu}$  b-closed map.

Example: 3.10

Let X={a,b,c,d},  $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$ . Let  $f: (X, \tau) \rightarrow (X, \tau)$  be defined by f(a) =b; f(b) = a; f(c) = d; f(d) = c. Here f is almost  $g^{\mu}$  b-closed but  $f\{b,d\} = \{a,c\}$  is not  $g^{\mu}$  b-closed. Therefore f is not  $g^{\mu}$  b-closed map.

Theorem: 3.11

If  $f:(X,\tau) \to (Y,\sigma)$  is almost  $g^{\mu}$  b-closed map and  $g:(Y,\sigma) \to (Z,\gamma)$  is strongly  $g^{\mu}$  b-closed

map then  $g \circ f : (X, \tau) \to (Z, \gamma)$  is almost  $g^{\mu}$  b-closed map.

Proof: It is obvious.

Theorem: 3.12

The composite mapping of two strongly  $g^{\mu}$  b-closed map is strongly  $g^{\mu}$  b-closed map. From the above theorem and example we have the following diagram

Strongly 
$$g^{\mu}$$
 b-closed map  
 $g^{\mu}$  b-closed map  
 $g^{\mu}$  b-closed map

# 4. Strongly $g^{\mu}$ b-continuous and perfectly $g^{\mu}$ b-continuous maps

#### Definition: 4.1

A function  $f:(X,\tau) \to (Y,\sigma)$  is said to be strongly  $g^{\mu}$  -continuous if the inverse image of every  $g^{\mu}$  -open set of Y is supra open in  $(X, \tau)$ .

Definition: 4.2

A function  $f: (X, \tau) \to (Y, \sigma)$  is said to be strongly  $g^{\mu}$  b-continuous if the inverse image of every  $g^{\mu}$  b-open set of Y is supra open in  $(X, \tau)$ .

Theorem: 4.3

(i) Every strongly  $g^{\mu}$  b-continuous function is supra-continuous.

(ii) Every strongly  $g^{\mu}$  b-continuous function is strongly  $g^{\mu}$  -continuous

The converse of the above theorem is not true and it is shown by the following example

Example: 4.4

Let X = {a, b, c};  $\tau = \{\phi, X, \{a\}\}$  and  $\sigma = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$ . Define  $f: (X, \tau) \to (X, \sigma)$  by

f(a) = a, f(b) = c and f(c) = b. Then f is supra continuous but  $f^{-1}\{a\} = \{a\}$  is not supra closed. Therefore f is not strongly  $g^{\mu}$  b-continuous.

Theorem: 4.5

If  $f:(X,\tau) \to (Y,\sigma)$  is strongly  $g^{\mu}$  b-continuous and  $g:(Y,\sigma) \to (Z,\gamma)$  is  $g^{\mu}$  b-continuous then  $g \circ f : (X, \tau) \to (Z, \gamma)$  is supra continuous. Definition: 4.6

A function  $f:(X,\tau) \to (Y,\sigma)$  is said to be perfectly  $g^{\mu}$  -continuous if the inverse image of every  $g^{\mu}$  -open set of Y is  $cl^{\mu}open^{\mu}$  in  $(X, \tau)$ .

Definition: 4.7

#### Vol. 1, Issue 2, pp. 111-117

A function  $f: (X, \tau) \to (Y, \sigma)$  is said to be perfectly  $g^{\mu}$  b-continuous if the inverse image of every  $g^{\mu}$  b-open set of Y is  $cl^{\mu}open^{\mu}$  in  $(X, \tau)$ .

Theorem: 4.8

- (i) If a function  $f:(X, \tau) \to (Y, \sigma)$  is said to be perfectly  $g^{\mu}$  b-continuous function then f is perfectly<sup> $\mu$ </sup> continuous.
- (ii) If a function  $f:(X, \tau) \to (Y, \sigma)$  is said to be perfectly  $g^{\mu}$  b-continuous function then f is strongly  $g^{\mu}$  b-continuous.
- (iii) If a function  $f:(X, \tau) \to (Y, \sigma)$  is said to be perfectly  $g^{\mu}$  -continuous function then f is perfectly<sup> $\mu$ </sup> continuous.
- (iv) If a function  $f: (X, \tau) \to (Y, \sigma)$  is said to be perfectly  $g^{\mu}$  -continuous function then f is strongly  $g^{\mu}$  -continuous.
- (v) If a function  $f: (X, \tau) \to (Y, \sigma)$  is said to be perfectly  $g^{\mu}$  b-continuous function then f is perfectly  $g^{\mu}$  -continuous .

Example: 4.9

Let X = {a, b, c};  $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$  and  $\sigma = \{\phi, X, \{a\}\}$ . Define  $f: (X, \tau) \to (X, \sigma)$  be an identity map. Then f is perfectly<sup>µ</sup> continuous but it is not perfectly g<sup>µ</sup> -continuous and perfectly g<sup>µ</sup> b-continuous. Theorem: 4.10

If  $f: (X, \tau) \to (Y, \sigma)$  is perfectly<sup>µ</sup> continuous and if Y is both  $T_{1}^{\mu} - space$  and  $T_{gb}^{\mu}$  -space, then f is

perfectly  $g^{\mu}$  b-continuous.

From the above theorem and examples we have the following implications:

From the above theorem and examples we have the following implications:



Here the numbers 1-5 represent the following:

1. Supra continuous 2. strongly  $g^{\mu}$  b-continuous 3. strongly  $g^{\mu}$  -continuous

4. Perfectly  $g^{\mu}$  b-continuous 5. Perfectly  $g^{\mu}$  -continuous 6. Perfectly  $^{\mu}$  -continuous

### 5. Strongly $g^{\mu}$ b –irresolute and Almost $g^{\mu}$ b-irresolute Functions

#### Definition: 5.1

A function  $f: (X, \tau) \to (Y, \sigma)$  is said to be strongly  $g^{\mu}$  -irresolute if  $f^{-1}(V)$  is supra open in  $(X, \tau)$  for every  $g^{\mu}$  -open set V of  $(Y, \sigma)$ .

Definition: 5.2

A function  $f: (X, \tau) \to (Y, \sigma)$  is said to be strongly  $g^{\mu}$  b-irresolute if  $f^{-1}(V)$  is supra open in  $(X, \tau)$  for every  $g^{\mu}$  b-open set V of  $(Y, \sigma)$ .

Theorem: 5.3

(i) Every strongly  $g^{\mu}$  b-irresolute function is  $g^{\mu}$  b-irresolute.

### Vol. 1, Issue 2, pp. 111-117

- (ii) Every strongly  $g^{\mu}$  b-irresolute function is  $g^{\mu}$  b-continuous.
- (iii) Every strongly  $g^{\mu}$ -irresolute function is  $g^{\mu}$ -irresolute.
- (iv) Every  $g^{\mu}b$ -irresolute function is  $g^{\mu}b$ -continuous.

Proof: (i) Let V be  $g^{\mu}$  b-open in  $(Y, \sigma)$ . Since f is strongly  $g^{\mu}$  b-irresolute,  $f^{-1}(V)$  is supra open

in  $(X, \tau)$  and hence it is  $g^{\mu}$  b-open in  $(X, \tau)$ . Therefore f is  $g^{\mu}$  b-irresolute.

Remark: 5.4

The converses of the above theorems are not true and it is shown by the following examples.

Example: 5.5

- (i) Let X = {a, b, c};  $\tau = \{\phi, X, \{a\}\}$  and  $\sigma = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ . Define  $f: (X, \tau) \to (X, \sigma)$  by f(a) = b, f(b) = a and f(c) = c. Then f is  $g^{\mu}$  b-irresolute .But  $f^{-1}\{a\} = \{b\}$  is not supra closed. Therefore f is not strongly  $g^{\mu}$  b-irresolute.
- (ii) Let X = {a, b, c,d};  $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$  and  $\sigma = \{\phi, X, \{a\}\}$ . Define  $f: (X, \tau) \to (X, \sigma)$  be an identity function. Here f is  $g^{\mu}$  b-continuous. But  $f^{-1}\{a, c\} = \{a, c\}$  is not  $g^{\mu}$  b-closed. Therefore f is not strongly  $g^{\mu}$  b-irresolute.

#### Definition: 5.6

A function  $f: (X, \tau) \to (Y, \sigma)$  is said to be strongly  $b^{\mu}$  -irresolute if  $f^{-1}(V)$  is supra open in  $(X, \tau)$  for every  $b^{\mu}$  -open set V of  $(Y, \sigma)$ .

Theorem: 5.7

(i) If  $f: (X, \tau) \to (Y, \sigma)$  is strongly  $b^{\mu}$  -irresolute and Y is  $T_{g^{\mu}}$  -space then f is strongly  $g^{\mu}$  b-irresolute.

(ii) If 
$$f:(X, \tau) \to (Y, \sigma)$$
 is strongly  $g^{\mu}$ -irresolute and Y is  $\mathcal{T}_{g^{\mu}}$ -space then f is strongly  $g^{\mu}$  b-irresolute.

Proof: It is obvious.

Theorem: 5.8

(i) If  $f: (X, \tau) \to (Y, \sigma)$  is strongly  $g^{\mu}$  b-irresolute function then f is strongly  $b^{\mu}$ -irresolute.

(ii) If  $f:(X, \tau) \to (Y, \sigma)$  is strongly  $g^{\mu}$  b-irresolute function then it is strongly  $g^{\mu}$ -irresolute. Proof: It is obvious.

Remark: 5.9

The converse of the above theorem is not true and it is shown by the following example. Example: 5.10

Let X = {a, b, c};  $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$  and  $\sigma = \{\phi, X, \{a\}\}$ . Define  $f: (X, \tau) \to (X, \sigma)$  by f(a) = b, f(b) = a, f(c) = c. Then f is strongly  $b^{\mu}$  -irresolute. But  $f^{-1}\{c\} = \{c\}$  is not supra open in  $(X, \tau)$ . Therefore f is not strongly  $g^{\mu}$  b-irresolute. Example: 5.11

Let  $X = \{a, b, c\}; \tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$ . Let  $f: (X, \tau) \to (X, \tau)$  be an identity function. Here f is strongly  $g^{\mu}$ -irresolute. But  $f^{-1}\{a\} = \{a\}$  is not supra closed in  $(X, \tau)$ . Therefore f is not strongly  $g^{\mu}$  b-irresolute.

Theorem: 5.12

For a function  $f: (X, \tau) \to (Y, \sigma)$  if f is strongly  $g^{\mu}$  b-irresolute then for each  $x \in X$  and each  $g^{\mu}$  b-open set V of Y containing f(x) there exist a supra open set U of X containing x such that  $f(U) \subset V$ .

Proof: Let  $x \in X$  and V be any  $g^{\mu}$  b-open set V of Y containing f(x). since f is strongly  $g^{\mu}$  b-irresolute then  $f^{-1}(V)$  is supra open in X and contains x. Let  $U = f^{-1}(V)$  then U is supra open subset of X containing x such that  $f(U) \subset V$ .

Theorem: 5.13

Let  $f: (X, \tau) \to (Y, \sigma)$  and  $g: (Y, \sigma) \to (Z, \gamma)$  be any two functions then the composition  $g \circ f: (X, \tau) \to (Z, \gamma)$  is i) strongly  $g^{\mu}$  b-irresolute if f is strongly  $g^{\mu}$  b-irresolute and g is  $g^{\mu}$  b-irresolute

#### Vol. 1, Issue 2, pp. 111-117

(ii)  $g^{\mu}$  b-irresolute if f is  $g^{\mu}$  b-continuous and g is strongly  $g^{\overline{\mu}}$  b-irresolute. Proof: It is obvious.

Definition: 5.14

A function  $f:(X, \tau) \to (Y, \sigma)$  is almost  $g^{\mu}$ -irresolute if  $f^{-1}(V)$  is  $b^{\mu}$ -open in  $(X, \tau)$  for every  $g^{\mu}$ -open set V of  $(Y, \sigma)$ .

Definition: 5.15

A function  $f: (X, \tau) \to (Y, \sigma)$  is almost  $g^{\mu}$  b-irresolute if  $f^{-1}(V)$  is  $b^{\mu}$  -open in  $(X, \tau)$  for every  $g^{\mu}$  b-open set V of  $(Y, \sigma)$ .

Theorem: 5.16

(i) If  $f: (X, \tau) \to (Y, \sigma)$  is almost  $g^{\mu}$  b-irresolute then it is  $b^{\mu}$ -continuous map.

(ii) If  $f: (X, \tau) \to (Y, \sigma)$  is almost  $g^{\mu}$  b-irresolute then it is  $g^{\mu}$  b-irresolute map.

(iii) If  $f: (X, \tau) \to (Y, \sigma)$  is almost  $g^{\mu}$ -irresolute then it is  $b^{\mu}$ -continuous map.

(iv) If  $f: (X, \tau) \to (Y, \sigma)$  is almost  $g^{\mu}$  b-irresolute then it is almost  $g^{\mu}$ -irresolute map.

(v) If  $f: (X, \tau) \to (Y, \sigma)$  is  $b^{\mu}$  -continuous then it is  $g^{\mu}$  b-continuous map.

Proof: (i) Let V be supra open in  $(Y, \sigma)$  and hence  $g^{\mu}$  b-open set in  $(Y, \sigma)$ . Since f is almost  $g^{\mu}$  b-irresolute  $f^{-1}(V)$  is  $b^{\mu}$  -open in  $(X, \tau)$ . Hence f is  $b^{\mu}$  -continuous.

Remark: 5.17

The converse of the above theorem is not true and it is shown by the following examples. Example: 5.18

Let X = {a, b, c,d};  $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ . Define  $f: (X, \tau) \rightarrow (X, \tau)$  be an identity function. Here f is  $b^{\mu}$ -continuous. But  $f^{-1}\{a, b, c\} = \{a, b, c\}$  is not  $b^{\mu}$ -closed. Therefore f is not almost  $g^{\mu}$  b-irresolute. Example: 5.19

Let X = {a, b, c};  $\tau = \{\phi, X, \{a\}\}\$ and  $\sigma = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}$ . Define  $f: (X, \tau) \to (X, \sigma)$  by f(a) = b, f(b) = a, f(c) = c. Hence f is  $g^{\mu}$  b-irresolute. But  $f^{-1}\{b, c\} = \{a, c\}$  is not  $b^{\mu}$  -closed. Therefore f is not almost  $g^{\mu}$  b-irresolute. Theorem: 5.20

Let  $f: (X, \tau) \to (Y, \sigma)$  and  $g: (Y, \sigma) \to (Z, \gamma)$  be any two functions then the composition

 $g \circ f: (X, \tau) \to (Z, \gamma)$  is i) almost  $g^{\mu}$  b-irresolute if f is almost  $g^{\mu}$  b-irresolute and g is  $g^{\mu}$  b-irresolute

(ii) almost  $g^{\mu}$  b-irresolute if f is  $b^{\mu}$ -irresolute and g is almost  $g^{\mu}$  b-irresolute.

Proof: It is obvious.

Theorem: 5.21

For a function  $f: (X, \tau) \to (Y, \sigma)$  if f is almost  $g^{\mu}$  b-irresolute then for each  $x \in X$  and each  $g^{\mu}$  b-open set V of Y containing f(x) there exist a supra open set U of X containing x such that  $f(U) \subset V$ .

Proof: It is obvious.

From the above theorem and examples we have the following diagram:



Here the numbers 1-9 represent the following implication: 1. Strongly  $g^{\mu}$  b-irresolute 2.  $g^{\mu}$  b-irresolute 3.  $g^{\mu}$  -irresolute

#### Vol. 1, Issue 2, pp. 111-117

| 4. Strongly $g^{\mu}$ -irresolute | 5. Strongly $b^{\mu}$ -irresolute | 6. $g^{\mu}$ b-continuous           |
|-----------------------------------|-----------------------------------|-------------------------------------|
| 7. almost $g^{\mu}$ b-irresolute  | 8. $b^{\mu}$ -continuous          | 9.almost g <sup>µ</sup> -irresolute |

#### **References:**

- [1] M.E. Abd E1 Monsef, S.N. E1 Deeb and R.A. Mahmoud,  $\beta$  -open sets and  $\beta$  continuous mappings. *Bull. Fac. Sci. Assiut Univ.*, *12* (1983), 77-90.
- [2] D.Andrijevic, on b-open sets, Mat. Vesnik 48(1996), no. 1-2, 59-64.
- [3] I. Arockiarani and M.Trinita Pricilla, On Supra generalized b-closed sets, *Antarctica Journal of Mathematics, Volume* 8(2011).
- [4] S.P.Arya and T.M.Nour, characreizations of s-normal spaces, *Indian J.Pure Appl.Math.21*(1990), no.8, 717-719.
- [5] J.Dontchev, On generalizing semi-preopen sets, *Mem.Fac.Sci.Kochi* Univ.Ser.A.Math.16(1995), 35-48.
- [6] E.Ekici and M.Caldas, Slightly continuous functions, *bol.Soc.Parana.Mat.*(3)22(2004), *no.*2, 63-74.
- [7] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo(2)19(1970), 89-96.
- [8] H.Maki,R.Devi and K.Balachandran,Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac.Sci.Kochi Univ.Ser.A.Math.15(1994),51-63.
- [9] A.S. Mashhour, A.A. Allam, F.S. Mahamoud and F.H.Khedr, On supratopological spaces, *Indian J.Pure and Appl. Math. No. 4, 14* (1983), 502 510.
- [10] Mahmoud,R.A. and M.E.Abd El-Monsef,1990, β –irresolute and β –topological invariant,*Proc.Pakistan Acad.Sci.*,27(No.3):285-296.
- [11] Nasef,A.A. and Noiri,T.1997.Some weak forms of almost continuity, *Acta Math Hungar*,74:211
- [12] O.R. Sayed and Takashi Noiri, on supra b open sets and supra b continuity on topological spaces, *European Journal of pure and applied Mathematics*, 3(2) (2010), 295 – 302.
- [13] M.Trinita Pricilla and I. Arockiarani, on almost contra  $g^{\mu}b$  –continuous functions, International Journal of Mathematical sciences and Applications.(To Appear)
- [14] M.Trinita Pricilla and I. Arockiarani,  $g^{\mu}b$  Homeomorphisms in Supra Topological spaces International Journal of Mathematical Sciences and Engineering Applications. (To Appear)
- [15] M.Trinita Pricilla and I. Arockiarani, "on supra T-closed sets", International journal of Mathematical Archive, 2(8)(2011)1-5.
- [16] I. Arockiarani and M.Trinita Pricilla, approximately g<sup>µ</sup>b- continuous maps in supra topological spaces ,*Kerala Mathematical Association*.(To Appear)
- [17] Veerakumar, M.K.R.S.2000.Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. (Math) 21:1-19