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Abstract: In this study, the free vibration analysis of simply supported rectangular Kirchhoff plates of various 

aspect ratios was carried out using the Ritz and Galerkin methods in the purpose of comparing the two methods. 

The same systematically constructed comparison functions were used in both methods, and the procedures were 

implemented with the help of purposefully developed computer programmes. The numbers of terms in the shape 
functions used were 1, 4, 9, 16, 25 and 36, and the first six frequency parameters were retained due to the 

deteriorating accuracy from the lower to the upper ends of the eigenvalue spectrum. Both methods gave 

identical results which also were in excellent agreement with the exact solutions, irrespective of the aspect ratio 

considered. However, the most consistent results were obtained in the case of a square plate. From the CPU time 

efficiency study carried out, it was observed that the Galerkin method is more time-efficient than the Ritz 

method for lower numbers of terms in the shape functions, while the Ritz method exhibited much more time 

efficiency than its counterpart for higher numbers of terms in the shape functions. 

Keywords: Frequency parameter, free vibration, Kirchhoff plate, simply supported plate, polynomial trial 

function. 

 

I. INTRODUCTION 
Kirchhoff plates are thin plates under small deformations fulfilling a number of hypotheses commonly 

known as Kirchhoff hypotheses [1, 2, 3, 4]: 

(i) The constituent plate’s material is elastic, homogenous and isotropic.  

(ii) The plate is initially flat. 

(iii) The deflection of the middle plane of the plate is small compared to its thickness. 

(iv) Points of the plate lying initially on a normal to the middle plane of the plate remain on the normal 

to the middle surface of the plate after bending.  

(v) The normal stresses in the transverse direction are negligible comparatively to the other stress 

components. 

(vi) The middle surface of the plate remains unstrained after bending.  
Such plates are extensively used in the various branches of engineering as a result of their load-

carrying capacity and the economy in materials [5]. Their applications extend to numerous architectural 

structures, bridges, hydraulic structures, machine parts etc., and they are often subjected to dynamic loads. The 

vibration analysis of Kirchhoff plates of various shapes and boundary conditions is therefore of paramount 

importance in order to avoid their failure. The present study focusses on the free vibration analysis of simply 

supported rectangular Kirchhoff plates. 

Abundant literature on the dynamic analysis of thin rectangular plates exists. However, exact analytical 

solutions for the plate problems are available for few boundary conditions which include all combinations in 

which two opposite edges are simply supported, and those with one edge free to slide while the rotation is 

restrained and, on the opposite side, simply supported or sliding [6]. Because of the tediousness of the exact 

solutions (in cases where they exist) and their absence for numerous edge conditions, several approximate 
methods of plates’ vibration analysis have been devised by researchers. The Ritz and Galerkin methods which 

have the merit to provide close form solutions are examples of such approximate approaches. Both methods are 

applicable to the dynamic analysis of rectangular plates of various boundary conditions, provided that 

appropriate shape functions are obtained. In this work, the two methods are used to carry out the free vibration 

analysis of simple supported Kirchhoff plates of various aspect ratios using similar shape functions in the 

purpose of comparing them in terms of accuracy and efficiency.  



Free Flexural Vibration Analysis of Simply Supported Kirchhoff Plates by Ritz and .. 

International organization of Scientific Research                                                          34 | Page 

In general the two methods are not mathematically equivalent: the Ritz method is a versatile method of 

global as well as piece-wise approximations to the solution of variational problems in solid mechanics and 

requires the knowledge of the energy functional; the Galerkin method is also known for obtaining approximate 

solutions but of (partial) differential equations and thus requires the knowledge of the (partial) differential 

equation of the system [7]. It is well documented that the Ritz method is applicable to only variational 

formulations without invoking any (partial) differential equations of the system to analyse. That is why it is 

referred to as a direct variational method. The Galerkin method which is weighted residual method invoking 

(partial) differential equations of the systems to analyse, is generally referred to as an indirect method. The 

Galerkin method may be more preferable than its counterpart, the Ritz method, if it is more convenient to work 

with the governing differential equations rather than with the energy functional. Moreover, there are problems 
for which no satisfactory variational principle has been formulated, but for which a set of governing differential 

equations exists. This suggests that the Galerkin method has broader application than the Ritz approach [3].  

Theoretically, in order to obtain a correct solution, the Ritz method requires a set of admissible 

functions which must not violate the essential or geometric or kinetic boundary conditions and should also be 

linearly independent and complete [8, 9, 10, 11, 12, 13]. If comparison functions (i.e. the ones satisfying both 

kinetic and natural boundary conditions) are used in Ritz method, more accurate eigenvalues are expected. The 

Galerkin method also requires linearly independent basis functions but of the class of comparison functions. The 

accuracy and convergence of the solutions generated by the two methods strongly depend on the choice of the 

trial functions which is based on an intuitive idea of what the true deformation of the structure looks like, and 

this is actually one of the weaknesses of both methods.  

The present work intends to construct polynomial comparison functions in a systematic way, bearing in 

mind their number in the series and their degree. The level of round-off errors inherent to polynomial trial 
functions shall probably be eased by the use of symbolic computing offered by Mathematica software. 

 

II. METHODOLOGY 

2.1 Construction of the Polynomial Trial Functions 

Consider a simply supported rectangular Kirchhoff plate of side dimensions a and b and thickness h. 

Trial functions of the class of comparison functions are to be constructed which will be used in the analysis of 

the plates using both the Ritz and Galerkin methods. To this end, the shape is considered in the form:  

 

                                                                                                                                                                 

 

 

 

 

 

 

Fi(x) is a polynomial function of purely x, x being the coordinate in the direction of the dimension a of the plate. 
Gk(y) is a polynomial function of purely y, y being the coordinate in the direction of the dimension b of the 

plate.  Cik are unknown coefficients. 

Let the polynomial trial function in x-direction be sought in the form: [14] 

 

     
   

       
   

     
   

       
   

                                                                                                                             
 

where i is a non-nil integer number; the coefficients     
   

 (k = 1, 2, 3, 4) are obtained by imposing the boundary 

conditions (geometrical and statical) to the trial functions.  

For simply supported ends, the boundary conditions are given as:  
Fi(0) = Fi

’’(0) = Fi(a) = Fi
’’(a) = 0 

Imposing the boundary conditions on Fi(x), i = 1, 2, 3, 4, 5, 6, 7, and making use of the dimensionless 

parameters ξ = x/a and η = y/b yield the first six non-null comparison functions in x-direction below: 
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In a similar manner the following six consecutive comparison functions are obtained in y-direction: 

 

                                                                                                                                                                              

         
 

 
   

 

 
                                                                                                                                                        

            
  

 
   

  

 
                                                                                                                                          

            
  

 
   

 

 
                                                                                                                                            

            
  

 
   

  

 
                                                                                                                                          

            
 

 
   

 

 
                                                                                                                                             

 

2.2 Ritz Direct Variational Method 

In terms of the non-dimensional coordinates, (1) can be rewritten as: 

                      

 

 

 

 

                                                                                                                                           

For convenience, (15) can be put in the form: [14] 

                 

 

 

                                                                                                                                                          

where p = m x n; 

C1 = C11, C2 = C12, C3 = C13, …, Cn = C1n, Cn+1 = C21, …, C2xn = C2n, C2xn+1 = C31, …, Cp = Cmn; 

                                                                   
                                                                                        

          . 
In matrix form, (16) can be put as: 

                                                                                                                                                                                       
where: 

                        and                        ; the superscript T refers to matrix transpose. 

The plate’s maximum total potential energy will be given by: 

     
 

 

  

  
      

       
                        

      

 

 

 

 

 
 

 
                   

 

 

 

 

                                                                                                           

where α is the side ratio a/b and the subscripts ξ and η refer to differentiation with respect to the subscript and 

the number of times the subscript appears denotes the order of differentiation. 

 

Substitution of (17) into (18) gives: 

  
 

 

  

  
        

  
 
    

         
  

 
    

           
  

 
    

     

 

 

 

 

          
  

 
    

       
 

 
                     

 

 

 

 

                                           

(19) can further be put as: 

  
 

 

  

  
                                                                                                                       

where: 
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The minimisation of the energy functional given in (20) as required by the Ritz method yields: 
  

  
   

It follows that: 



Free Flexural Vibration Analysis of Simply Supported Kirchhoff Plates by Ritz and .. 

International organization of Scientific Research                                                          36 | Page 

                                                                                                                                                                                             
where:                                     
A1, A2, A3, A4 and B are evaluated as follows: 
 

        
        

 

 

 

 

   

 
 
 
 
 
 
                                    

                                    

                                                   
                                                   
                                                   

                                     
 
 
 
 
 

 

 

 

 

                                                              

 

        
        

 

 

 

 

    

 
 
 
 
 
 
                                    

                                    

                                                   
                                                   
                                                   

                                     
 
 
 
 
 

 

 

 

 

                                                           

 

        
        

 

 

 

 

   

 
 
 
 
 
 
                                    

                                    

                                                   
                                                   
                                                   

                                     
 
 
 
 
 

 

 

 

 

                                                             

 

        
        

 

 

 

 

   

 
 
 
 
 
 
                                    

                                    

                                                   
                                                   
                                                   

                                     
 
 
 
 
 

 

 

 

 

                                                             

 

           

 

 

 

 

   

 
 
 
 
 
 
                        

                        

                                 
                                 
                                 

                         
 
 
 
 
 

 

 

 

 

                                                                                           

For non-trivial solution, the determinant of the matrix H must equal zero. This results in a polynomial 

equation in λ2 of degree p, whose solution yields p values of λ2 from which the corresponding values of the first 

p natural frequencies can be calculated. λ is called frequency parameter. 

 

2.3 Galerkin Indirect Method 

The equation of motion of a thin rectangular plate under flexural free vibration is given by: 

 

        

   
  

        

      
 

        

   
                                                                                                         

where    
    

 
 

  

    and all other parameters have the connotations as seen in previous sections. 

 In terms of the non-dimensional coordinates, (27) can be put as: 

 

        

   
    

        

      
   

        

   
                                                                                               

where        is as given in (15). 

 

Invoking the principle of Galerkin method (Ventsel and Krauthammer, 2001), it follows that: 
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where                     . 
 

(29) yields a system of p = m x n linear algebraic homogeneous equations in the unknown coefficients 

Cik representing the amplitudes of the vibration modes of the plate. In matrix form, it can be written as: 

 

                                                                                                                                                                                              
where: 

 

  

 
 
 
 
 
 
                     

                     

                          
                          
                          

                      
 
 
 
 
 

                                                                                                                                                       

 

                     
 

 

 

 
                       

 

 

 

 
                         

 

 

 

 
            

                 
 

 

 

 
                         

 

 

 

 
                       

 

 

 

 
       

                 
 

 

 

 
  

     
     

            

              

          is the differential operator. 

                                     
 , the superscript T refers to matrix transpose.  

It follows from (30) that, for non-trivial solution, the determinant of A must equal zero. This will lead 

to a polynomial equation of degree p in λ2 whose solution yields p values of the frequency parameter. From 

these values the approximations of the p consecutive natural frequencies can be computed. 
 

III.  RESULTS AND DISCUSSION 
3.1 Comparative advantages and disadvantages between Ritz and Galerkin methods 

Both Ritz and Galerkin methods rely on the choice of appropriate basis functions in order to yield 

accurate results. This is where resides their inherent shortcoming. Another disadvantage of both methods is that 

they are applicable only to simple configurations of plates (rectangular, circular, etc) because of the complexity 

of selecting the trial functions for domain of complex geometry. 

  If convenient trial functions are used, one-term approximation gives sufficient accuracy in engineering 

perspective for both methods. [7, 14]. Both methods have the advantage of yielding approximate results in the 
form of close form solutions. While the Ritz method requires only that the coordinates functions verify the 

essential (or kinetic or geometric) boundary conditions, the Galerkin method insists that both the kinetic and 

natural (or force) boundary conditions must be satisfied by the candidate trial functions. This makes it more 

difficult to construct trial functions for the Galerkin method than for the Ritz method. Nevertheless, the Ritz 

method has limited application when compared with the Galerkin method. [7, 15]. 

 

3.2 Frequency Parameters of Thin Simply Supported Rectangular Kirchhoff Plates of Various Aspect 

Ratios 

The procedures outlined in sections 2.2 and 2.3 were implemented by means of Mathematica 

(computer) programmes developed by the authors and making use of the polynomial comparison functions 

constructed systematically in section 2.1. The programmes were executed for m = n = 1, 2, 3, 4, 5, 6, for various 

aspect ratios, where m and n are the numbers of trial functions in x and y directions respectively in the shape 
function. For example, when m and n are kept equal to 1, the programmes yield the approximation of the 

fundamental frequency parameters; making m = n = 2, 3, 4, 5, 6, the first 4, 9, 16, 25, 36 frequency parameters 

respectively are obtained. Due to the fact that only a few number (at the lower end) of the Ritz and Galerkin 

eigenvalues tend to be accurate, only the first six frequency parameters are captured in Table 1. They are 

compared with exact solutions obtained using the Levy method. The Poisson’s ratio, μ was kept equal to 0.3 and 

the aspect ratios used were 0.4, 0.5, 2/3, 1, 1.5, 2 and 2.5. 

It was observed from the data showed in Table 1, that the Ritz and Galerkin methods yielded identical 

results. This may be explained by the fact that the same coordinate functions were used in the two methods. This 

confirms the statement of Vendhan and Das [7] which states that the Ritz method and the Galerkin method 

(based on the direct Euler-Lagrange equations) are mathematically equivalent provided the same set of 

coordinate functions are used in both methods. The table also shows that, irrespective to the aspect ratio 
considered, the retained first six frequency parameters are in excellent agreement with the exact solutions: 

among the six frequency parameters, four gave a null percentage difference while the other two yielded a 
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percentage difference not exceeding 0.13%. However, the square Kirchhoff plate gave more consistent results as 

they present a decreasing accuracy with increasing modes of vibration.   

 
Table 1: Comparison of frequency parameters for simply supported rectangular isotropic plates of 

various aspect ratios with exact solutions 

Aspect 

Ratio 
 

           for the Flexural Vibration Modes 

1 2 3 4 5 6 

0.4 

Exact solution 11.4487 16.1862 24.0818 35.1358 41.0576 45.795 

Galerkin method 
11.4487  

(0)* 
16.1862  

(0)*   

24.0856 

(0.016)*      

35.1752 

(0.11)*         

41.0576 

(0)*            

45.795 

(0)*            

Ritz method 
11.4487 

(0)* 

16.1862 

(0)* 

24.0856 

(0.016)* 

35.1752 

(0.11)*         

41.0576 

(0)*         

45.795 

(0)*         

0.5 

Exact solution 12.337 19.7392 32.0762 41.9458 49.348 49.348 

Galerkin method 
12.337   

(0)* 

19.7392  

(0)*   

32.0827  

(0.02)*           

41.9458 

(0)*              

49.348  

(0)*             

49.4132 

(0.13)*              

Ritz method 
12.337 

(0)* 

19.7392 

(0)* 

32.0827 

(0.02)*           

41.9458 

(0)*           

49.348 

(0)*           

49.4132 

(0.13)*              

2/3 

Exact solution 14.2561 27.4156 43.8649 49.348 57.0244 78.9568 

Galerkin method 
14.2561   

(0)* 

27.4156  

(0)*   

43.8649 

(0)*    

49.3606 

(0.03)*    

57.0244 

(0)*    

78.9663 

(0.01)* 

Ritz method 
14.2561 

(0)* 

27.4156 

(0)* 

43.8649 

(0)*    

49.3606 

(0.03)*    

57.0244 

(0)*    

78.9663 

(0.01)* 

1 

Exact solution 19.7392 49.348 49.348 78.9568 98.696 98.696 

Galerkin method 
19.7392   

(0)* 

49.348    

(0)* 

49.348  

(0)*   

78.9568 

(0)*    

98.7265 

(0.03)*    

98.7266 

(0.03)* 

Ritz method 
19.7392 

(0)* 

49.348 

(0)* 

49.348 

(0)* 

78.9568 

(0)* 

98.7265 

(0.03)*    

98.7266 

(0.03)* 

1.5 

Exact solution 32.0762 61.685 98.696 111.033 128.305 177.653 

Galerkin method 
32.0762  

(0)*  

61.685   

(0)*  

98.696  

(0)*   

111.061 

(0.03)*    

128.305 

(0)*    

177.674 

(0.01)*    

Ritz method 
32.0762 

(0)* 

61.685 

(0)* 

98.696 

(0)* 

111.061 

(0.03)*    

128.305 

(0)*    

177.674 

(0.01)*    

2 

Exact solution 49.348 78.9568 128.305 167.783 197.392 197.392 

Galerkin method 
49.348   

(0)* 

78.9568 

(0)*    

128.331 

(0.02)*    

167.783 

(0)*    

197.392 

(0)*    

197.653 

(0.13)*    

Ritz method 
49.348 

(0)* 

78.9568 

(0)* 

128.331 

(0.02)*    

167.783 

(0)*    

197.392 

(0)*    

197.653 

(0.13)*    

2.5 

Exact solution 71.5546 101.163 150.511 219.599 256.61 286.219 

Galerkin method 
71.5546   

(0)* 

101.163 

(0)*    

150.535  

(0.02)*   

219.845 

(0.11)*    

256.61  

(0)*   

286.219 

(0)*    

Ritz method 
71.5546 

(0)* 

101.163 

(0)* 

150.535  

(0.02)*   

219.845 

(0.11)*    

256.61  

(0)*   

286.219 

(0)*    
*
 Percentage difference with respect to exact solution 

    Another paramount factor that can be used to measure the efficiency and performance of a 

computational method is the CPU time elapsed by a computer programme devised for the purpose, to obtain 

meaningful results. In this study, the developed computer programmes, apart from yielding the frequency 

parameters, also give the CPU time elapsed to do so. A computer system (with the same specifications) was 

used to execute the programmes and the different CPU times in seconds were recorded in Table 2. The CPU 

time differences (which represent the difference between the time elapsed in running the programme used for 

the Galerkin method and the one elapsed in executing the programme for the Ritz method) were also tabulated 

according to the number of terms in the shape functions. It was observed from the table that, for a number of 

terms of 1, 4 and 9 (i.e. when m = n = 1, 2, 3), the CPU time varied from some fractions of second to not up to 9 

seconds for the Galerkin method, while the Ritz method CPU time consumption ranged from some fractions of 
second to not up to 33 seconds, across the aspect ratios considered. In that range, the time differences are 

negative, meaning that the Galerkin method appeared to be more time-efficient than its counterpart, the Ritz 

method. Conversely, when the number of terms in the shape function is 16, 25 and 36 (i.e. when m = n = 4, 5 

and 6), the CPU time varied from 233.61 seconds up to 1859.36 seconds for the Galerkin method, whereas the 
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Ritz method took a CPU time ranging from 107.311 seconds to 543.059 seconds, across the aspect ratios 

considered. In that range, the recorded time differences were all positive and substantial, meaning that the Ritz 

method is much more time-efficient than the Galerkin method for the higher numbers of terms in the shape 

functions.    

 

Table 2: CPU times used in Galerkin and Ritz methods to obtain the various frequency parameters 

Aspect 

Ratio  

CPU time and time difference in seconds per number of terms in 

the shape function 

1 term 4 terms 9 terms 16 terms 25 terms 36 terms 

0.4 

CPU time (Galerkin 

Method) 
0.063 0.781 7.172 241.312 739.61 1669.21 

CPU time (Ritz 

Method) 
0.109 8.125 32.469 116.218 271.826 543.059 

CPU time difference -0.046 -7.344 -25.297 125.094 467.784 1126.151 

0.5 

CPU time (Galerkin 

Method) 
0.047 0.86 8.172 279.485 844.896 1778.26 

CPU time (Ritz 

Method) 
0.125 7.812 30.155 107.311 250.75 493.546 

CPU time difference -0.078 -6.952 -21.983 172.174 594.146 1284.714 

2/3 

CPU time (Galerkin 

Method) 
0.031 0.828 7.984 275.125 833.794 1859.36 

CPU time (Ritz 

Method) 
0.125 7.782 31.531 114.827 287.251 528.34 

CPU time difference -0.094 -6.954 -23.547 160.298 546.543 1331.02 

1 

CPU time (Galerkin 

Method) 
0.063 0.828 4.718 258.407 773.06 1636.09 

CPU time (Ritz 

Method) 
0.125 7.781 30.375 110.577 259.845 528.35 

CPU time difference -0.062 -6.953 -25.657 147.83 513.215 1107.74 

1.5 

CPU time (Galerkin 

Method) 
0.062 0.781 4.765 233.61 740.187 1671.05 

CPU time (Ritz 

Method) 
0.125 8.657 31.234 113.187 266.11 522.23 

CPU time difference -0.063 -7.876 -26.469 120.423 474.077 1148.82 

 

2 

CPU time (Galerkin 

Method) 
0.046 0.828 7.077 241.437 748.983 1646.62 

CPU time (Ritz 

Method) 
0.125 7.907 31.625 114.202 263.608 518.843 

CPU time difference -0.079 -7.079 -24.548 127.235 485.375 1127.777 

2.5 

CPU time (Galerkin 

Method) 
0.031 0.812 7.172 256.657 793.827 1823.44 

CPU time (Ritz 

Method) 
0.109 7.906 31.265 110.734 256.749 521.782 

CPU time difference -0.078 -7.094 -24.093 145.923 537.078 1301.658 

 

IV. CONCLUSION 
In this study, systematically constructed comparison functions were used to carry out the free vibration 

analysis of simply supported rectangular Kirchhoff plates of different aspect ratios, using the Ritz and Galerkin 

methods. Mathematica computer programmes were developed and used for the purpose. Identical results were 

obtained using both methods, even though the literature shows that the Galerkin method has a wider application 

than its counterpart. These results portrayed an excellent agreement with exact solutions, when taken from the 
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lower end of the eigenvalue spectrum. The results obtained for the square plate were the most consistent.  The 

CPU time efficiency study carried out showed that: 

1. For a number of terms in the shape functions of 1, 4 and 9, the Galerkin method proved to be more 

efficient than the Ritz method. 

2. However, for greater numbers of terms in the shape functions, the Ritz method is much more time-

efficient than the Galerkin method. 
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