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ABSTRACT: Based on the Halpin-Tsai approximate physical property model, using the von-Karman 

strain-displacement relationship, the governing equations of the graphene composite beam under damped 

time-delay are established. The Galerkin method is used to decouple and solve the equation. The linear stability 

region of the system under active control is analyzed theoretically. It is found that the area of the stability region 

gradually decreases with the increase of time delay, and the number of stability regions is finally reduced from 

theoretical n to one with the increase of control gain. The nonlinear numerical calculation gives the bifurcation 

response of the nonlinear system with time-delay, and it can very well confirm the theoretical results. 
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I. INTRODUCTION 
Graphene is currently the thinnest two-dimensional material found in the world and has superior 

mechanical properties. Its theoretical strength can reach 125 GPa, which is 100 times of that of steel; its elastic 

modulus is 1.0 TPa, which is comparable to carbon nanotubes [1,2]. Graphene therefore becomes an ideal 

reinforcement material for nanocomposites. Due to the physical properties of high strength, high stiffness and 

low density, graphene nanocomposites are expected to be used to develop key structures in the fields of civil 

engineering, aerospace, etc [3]. 

When an aerospace structure is operating in space, once it is excited by some kind of excitation, its 

vibration will continue for a long time, which will seriously affect the stability and accuracy of the structure. 

Therefore, the vibration control of the structure has very important engineering significance. From the 

perspective of dynamic control, there are mainly two methods: active control and passive control. Since the 

active control does not rely on external excitation, its control effect is significantly better than passive control. 
Therefore, in order to explore the active control effect of graphene nanocomposite beams, a damping 

time delay term is introduced to better fit the actual process. The physical parameters of the structure are given 

by the Halpin-Tsai model [4]. Based on the von Karman strain-displacement relationship [5], the governing 

equations of the beam are established, and the equations are solved by the Galerkin method. The linear stability 

region of the beam with specific volume fraction is analyzed theoretically, and the bifurcation diagram of the 

nonlinear system is given through numerical calculation, and the comparison shows that it can very well confirm 

the theoretical results. Finally, in order to explain the nonlinear vibration state more intuitively, we give the time 

history curves and phase graph of the structure under the control of several groups of special parameters. 

 

Ⅰ. Material parameters 

Assuming that graphene nanosheets are randomly distributed in the matrix material, according to the 

Halpin-Tsai micromechanical model [4], the elastic modulus of graphene nanocomposites is as follows: 
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Where
G

L and 
G

T are the average length and thickness of the graphene nanosheets, 
G

V  is the volume fraction 

of the graphene nanosheets, and
G

E and
M

E are the elastic modulus of the graphene nanosheets and the matrix 

material, respectively. The density and Poisson's ratio of graphene nanocomposites can be estimated can be 

estimated by the mixing law: 
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In the formula, the subscripts C, G and M represent composite materials, grapheme nanosheets and matrix 

materials, respectively. 

 

Ⅱ. Vibration control equation 

Using von Karman strain-displacement relationship [5,6]: 
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The strain energy of the beam can be expressed as: 
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In the formula, u、 and w represent the beam's axial displacement, cross-sectional rotation angle and transverse 

displacement, respectively. The kinetic energy of the beam can be expressed as 
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The work done by the external force is 
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Where fx  and fz  represent the volume force in the x and z directions, respectively, and c is the damping 

coefficient. 

According to Hamilton's principle:  
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d 0
t
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K U t     , Without considering the work done by volume 

force and ignoring the axial displacement, the nonlinear vibration equation of the beam in damping state can be 

obtained: 
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In equation (7), the coefficients of stiffness and inertia are as follows: 
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Ⅲ. Linear stability analysis 

Introduce the following dimensionless quantities: 
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Then the governing equation (7) can be dimensionless: 

 

22 2 2

2 4

2 2 2

3

2

W W W W W
c

X X X X t t


   

      
    

      

  (9a) 

 

2 2

2

2 2
1 2

W

X X t

 
   

   
   

   

  (9b) 

In order to obtain the approximate solution of equation (9), the Galerkin method is used to discretize it. Let the 

first-order approximate solution be: 
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Substituting equation (10) into equation (9), and integrating in the X direction, while introducing the time-delay 
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damping term, we get: 
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Where k  is the control gain and   is the time delay. In order to analyze the linear stability region of the 

system , suppose the solution of the system is: 
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Then equation (11) becomes: 
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In equation (13), r i t   . For the system to have a non-zero solution, the following conditions must be 

satisfied: 
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Where =k kc . For a linear system, when 0  , the system is stable; when 0  , the system is unstable. In 

order to obtain the boundary between the stable and unstable solutions of the system, let = 0 , that is, r i t , 

then according to equation (14), we can get: 
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Separating the real and imaginary parts in equation (15), we can get: 
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By solving equation (16), we can get 
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It can be seen from equation (17) that the stability of the beam solution can be achieved by controlling the time 

delay   and the gain coefficient k . 
 

Ⅳ. Numerical calculation and analysis 

Consider the graphene nanosheet/epoxy nanocomposite beam, set 1/5  and = 0 .5 %
G

V , and the material 

parameters are shown in Table 1. 

 

Table 1 GPL and epoxy resin properties 

Material parameters Graphene nanosheets [7] Epoxy resin [8] 

Average thickness (nm) 0.8[9] / 

Average length (μm) 1[9] / 

Elastic Modulus (GPa) 1010 3.0 

Density (kg/m-3) 1062.5 1200 

Poisson's ratio 0.186[10] 0.34 

 

According to formula (18), the stability solution of the linear system can be calculated., as shown in Figure 

1 .The shaded part in the figure represents the stable area of the system, that is, its internal parameters ( , )k   

can ensure that the control system can return to the equilibrium position under any small disturbance. In addition, 
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it is found that with the increase of time delay  , the area of stability region decreases obviously, and as gain 

coefficient k  increases, the number of stability region of the system decreases from theoretically multiple to 

one, that is, when 
k

is a fixed value, the stability of the system changes with the time delay: when 0 .2 0 6k   , 

there is no stability region; when  -0 .2 0 6 , 0k  , the system has at least one stability region; when 

 0 , 0 .0 4 4k  , There are at least 3 stability region; when  0 .0 4 4 , 0 .2 1k  , the system has 2 stable regions; 

when 0 .2 1k  , the system has only one stability region. 

 

 
Figure 1 The stability region of the solution 

 
Figure 2 Bifurcation diagram 

Set  0 1, 2
i

S i   to solve the nonlinear control equation (11). Figure 2 shows the bifurcation diagram of the 

beam when the control gain coefficient = 0 .0 5k , The figure clearly reflects that when the control gain 

coefficient  = 0 .0 5 0 .0 4 4 , 0 .2 1k  , there are only two stable regions in the system, namely 

 0 , 7 .8  and  3 0 .4 , 3 8 .8  .Compared with figure 1, it is found that the theoretical results are well 

confirmed. when  7 .8 , 3 0 .4  , the system enters into a single periodic motion when it loses stability for the 

first time; when 38 .8  , the system goes from the second steady state to multi period motion and chaos. 

Therefore, when the control gain coefficient and time delay of the system are in the shaded part in Fig. 1, the 

system can achieve a good active control effect. 

 

 
Figure 3 = 0 .01 , the time history curves and 

phase graph 

 
Figure 4 = 20 , the time history curves and 

phase graph 

 

Figures 3 to 6 show the time history curves and phase graph when the values of time delay   are 0.01, 20, 

52.8, and 70, respectively, where k is 0.05. It can be seen from Figure 3 that the system is in the steady state 

zone of the first stage when = 0 .01 , that is, once the system vibrates due to external excitation, it can 

self-adjust to a balanced state; When the system loses stability for the first time, it enters a periodic motion state. 

Here we give the single-period response graph of the system when = 20 , that is, when the system is subjected 

to small disturbances, it cannot enter equilibrium eventually, but presents periodic motion after a period of 

irregular vibration, as shown in Figure 4; when the system loses stability for the second time, it enters multiple 

periodic motions and chaos, For example, when = 52 .8 , The system presents a 7 times period response, as 

shown in Figure 5; when = 70 , it shows a chaotic state, as shown in Figure 6. 
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Figure5 = 52 .8 , the time history curves and phase 

graph 

 
Figure6 = 70 , the time history curves and 

phase graph 

 

II. CONCLUSION 
Based on von Karman strain displacement relationship and Halpin Tsai physical parameter model, the 

governing equations of graphene nanocomposite beam with time-delay feedback are established.Through 

theoretical and numerical analysis, the active control effect of the control system is studied. The results show 
that by properly adjusting the parameters of the system, the disturbed structure can quickly return to the stable 

state, and when the system parameters are in the unstable region, the vibration form of the structure show single 

period motion, multiple period motion and chaos, these vibration forms will affect the structure's stability and 

working accuracy in space, and need to be avoided as much as possible. Finally, it needs to be pointed out that 

although this article describes the active control effect of graphene nanocomposite beams from both theoretical 

and numerical aspects, how to apply it in engineering is still a subject that requires a lot of research. 
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